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Abstract 

MEASURING HUMAN PERFORMANCE WITH A PARAMETER 
TRACKING VERSION OF THE CROSSOVER MODEL 

Glenn A. Jackson 

The purpose of this research is the evaluation of a particular 
parameter tracking system for use in measuring the performance of 
human operators in low order compensatory manual control systems. 
The system is based on a “crossover model” proposed by Duane McRuer, 
which assumes that the entire forward loop of the compensatory con- 
trol system can be represented by a gain, an integration and a pure 
time-delay. 

A continuous parameter tracking system is developed using an 
approximate version of the crossover model as the basic system 
model. The approximation involves the use of a first order Pad6 
time-delay in place of the pure time-delay. The parameter tracking 
system is designed to adjust automatically the gain and time-delay 
parameters so that the instantaneous value of the square of the error 
between the model output and the compensatory system output is 
driven toward zero. The tracking method is similar to those developed 
by George Bekey and Hans Meissinger, except a nonlinear parameter 
adjustment technique has been added to give smoother performance. 

The parameter tracking system is tested on subjects controlling 
single and double integrator plants, with input signals of bandwidth 
limited Gaussian noise. The gain and time-delay parameters are 
found to change significantly with training and with the bandwidth of 
the input signal. The parameters also vary between subjects and with 
the order of the plant being controlled. 

Using spectral analysis, the parameter values determined by the 
parameter tracking system are confirmed. Also, the crossover model 
is shown to represent the compensatory system nearly as well as the 
best linear time-invariant model. 

In addition to the experimental testing of the parameter tracking 
system, a theoretical analysis of the system is undertaken. It is shown 
that the convergence properties of the parameters can be calculated 
when the input signal is sinusoidal and the system is tracking a known 
constant coefficient system. The theoretical analysis is based on the 
method of Kryloff and Bogoliuboff. The extension of this analysis to 
the random input case is indicated. 
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It is concluded that, as long as the input bandwidth is properly 
chosen, the parameter tracking system developed is an excellent 
method for measuring human performance in certain low order 
compensatory control systems. 
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Chapter 1 

INTRODUCTION 

1.1 Compensatory Tracking 

One area of active research in the broad discipline called human 

performance, or human behavior, is compensatory tracking. In this 

type of tracking task the human operator (subject) serves as the con- 

troller in a conventional closed loop control system. 

The subject is asked to manipulate the signal forcing a dynamic 

system in such a manner that the system output follows a given input 

signal. The magnitude of the signal forcing the dynamic system is 

determined by the position of a control stick which the subject moves 

with his hand, arm, or wrist, depending on the particular type of con- 

trol stick being used. The error e(t) between the system input ei(t) 

and the actual system output do(t) is displayed on an oscilloscope 

located in front of the subject. The error signal is used by the sub- 

ject to determine future control stick action. The system configuration 

is shown in Fig. 1.1.1. 

The input signal is some unpredictable signal, such as low fre- 

quency filtered Gaussian white noise, or a sum of sinusoids that is 



e,(t) + Human 
- - - Operator 

Control c t 
Stick 

Controlled 
Element 

Figure 1.1.1 Block Diagram of a Compensatory Control Task. 



designed to approximate this type of signal. The subject is simply 

told to keep the error as small as possible at all times, and is free to 

move the control stick in any manner he deems bestl. 

Another type of tracking task, called pursuit tracking [ 13,261 2, 

is quite similar to the compensatory tracking task described above. 

The only difference in the two tasks is that in pursuit tracking a dual- 

beam oscilloscope is used,, and both the input and output signals are 

displayed, rather than the error between them. The objective in this 

case is to keep the output indicator on top of the input indicator, again 

by proper manipulation of the control stick. Pursuit tracking is con- 

sidered to be an easier task than compensatory tracking. This is 

because the input signal is explicitly displayed on the oscilloscope and 

the subject can more readily determine its characteristics. 

Research related to these two types of tracking tasks started 

during World War II when men in the armed forces were being trained 

to manually sight and fire automatic weapons [ 331 . The research 

continued in-the 1950’s and has been stimulated in recent years by the 

presence of manual control systems in space vehicles. 

1 Typical instructions for subjects can be found in Appendix A. 

2 Bracketed numbers are references to be found at the end of the report. 

3 



1.2 Performance Measures 

In the earliest experiments, researcher,s concentrated on mea- 

suring gross indices of performance such as the mean square error 

T 
‘1 
T I 

c2(t) dt , 

0 

(1.2-l) 

or the mean absolute value of error 

T 
1 

T J k(t)/ dt , (1.2-2) 

0 

where T was the length of the tracking task and e(t) the error in the 

compensatory control loop. (See Fig. 1.1.1.) These scores were 

related to individual differences, input signals, controlled elements, 

control sticks, and number of practice sessions, to name but a few. 

Most of these early tests were conducted by and for experimental 

psychologists. As time passed, however, more and more engineers 

became involved in compensatory tracking research. Engineers were 

interested in compensatory tracking for two main reasons: first, they 

were called upon to assist the psychologists in the development of bet- 

ter and more significant indices of performance; second, they them- 

selves were interested in learning what types of systems a subject 

could and could not control. By carefully analyzing the manner in 
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which subjects handled controlled elements with transfer operators 

like 

Kl Kl 
ycw=p , 2 , 

Kl Kl 
Tp+l ’ Or p(Tp+l) ’ (1.2-3) 

P 

where 

engineers hoped to determine some pertinent human operator charac- 

teristics which would prove useful in manual control system design. 

By having more information on a human operator’s capabilities, 

systems such as aircraft control systems can be designed more 

efficiently and with less fear of under or over estimating the operating 

range of a pilot. 

For these reasons, research engineers started to look beyond the 

gross indices of performance given in Eqs. (1.2-l) and (1.2-2). The 

most important extension in this area has been the attempt to catalog 

the equations that describe the human as a controller. Referring to- 

Fig. 1.1.1, the equations in question are those relating c(t) to I, 

assuming that the control stick dynamics are negligible. 

1.3 Determining the Equations of Human Response 

Many different methods have been proposed for the determination 
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of the equations that describe the human as a controller. Most of 

these methods are designed to identify only the linear action of the 

human operator. These methods include: parameter tracking [ 4,6, 

23,291; random input describing functions [ 271 f orthogonal fil- 

tering [ 161; and measurement of the impulse response [ 38,391. The 

most significant attempt that has been made to include the nonlinear 

aspects of the human operator has been by direct analog simulation [ 181, 

although some nonlinearities have been proposed for addition into 

parameter tracking systems [ 71. 

Only the first two of the methods discussed above have been 

applied in practice to any large extent. These two methods will be 

discussed very briefly at this point, since they are quite different in 

nature, and since both methods are directly related to the research to 

be discussed in this report. 

1.4 Parameter Tracking 

Parameter tracking will be discussed in detail in Chapter 3. The 

discussion here will be limited to the basic philosophy behind this type 

of system identification. 

In this type of analysis, a basic equation for the human operator 

is assumed with the coefficients being unknown quantities. The as-. 

sumed model of the human operator is simulated on an analog computer 

and driven in parallel with the subject, the model receiving exactly 
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the same signal as the subject. The coefficients of the model are 

adjusted, either continuously or iteratively, in such a manner that the 

model output gives a best fit to the actual subject output. The co- 

efficient adjustment is generally made using a gradient technique, 

where the gradients are determined using sensitivity equations [ 30, 

351 . 

The main advantage of this method lies in its use as an on-line 

device. It has been used extensively by Bekey [ 71, Todosiev [ 341, 

and others [ 2,3,15,37] . A general block diagram of this type of 

system is given in Fig. 1.4.1. 

1.5 Random Input Describing Functions 

Since Q,(t) is generally filtered Gaussian white noise, one natural. 

method of analysis is the random input describing function approach. 

In this method, the block diagram of the compensatory control system 

is assumed to be that shown in Fig. 1.5.1. Y,(jw) is the random input 

describing function of the human operator. It is determined from 

recorded tracking data by using spectral analysis in the following 

manner. The cross-spectral density Gic(jw) between the input signal 

and the control stick output, and the cross-spectral density Gie(jw) 

between the input signal and the compensatory error are determined 

experimentally. Y,(jw) is then defined in the conventional manner 

as [27], 

.7 



System Being Identified 

-I- 
I 

Model with Parameters 

(a19 l l l Y 
Qn) = z 

Sensitivity Equations 

a n 

Parameter 
Adjustment 
Equations 

Figure 1.4.1 General Block Diagram of a Parameter 
T’racking System -Output Error Method 
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Yp(p) is the transfer operator of the subject. More 

exactly , 

n,(t) is the uncorrelated portion of the subject output 

called the remnant. 

Figure 1. 5.1 Describing Function Block Diagram of the 
Compensatory Control System. 
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@ic cjw) 
y,ciw) = @ 

ie 
(jw) (1.5-l) 

The magnitude and phase of this experimentally determined describing 

function can be plotted on standard semi-log paper. These plots give 

a graphical description of the average linear action of the subject in 

the particular task being evaluated. 

If a more useable form of the describing function is desired, 

simple mathematical forms for Y,(jw) are assumed and the coef- 

ficients of the assumed form are varied until the approximate gain-phase 

plots closely match the experimental gain-phase plots. Several models 

may have to be tried before the curve fit is satisfactory. 

Since Y,(jw) models only that portion of the human operator output 

that is linearly correlated with the input signal, a noise term n,(t) is 

added to represent the injection of that portion of the human output 

which is not correlated with the input signal. n,(t) is called the 

remnant. 

The main advantage of this method is that it is amenable to 

rigorous mathematical analysis. Also, no pre-experimental assump- 

tion of the form of Yp(jw) needs to be made before developing the 

actual gain -phase curves. The main disadvantage is that it is a time 

consuming off-line method that requires a considerable amount of 

equipment for analysis. 
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1.6 A General Model 

McRuer, Elkind and their respective associates are two groups of 

researchers who have made an extremely thorough analysis of many 

compensatory tracking tests using the random input describing function 

approach [ 13,25,26]. McRuer , especially, has calculated Yp (j w) for 

numerous combinations of controlled elements and input signals and 

has postulated a transfer function that can be adjusted to match the 

gain-phase curves of most subjects. This transfer function is 

K1 (jw T1 + 1) e-jw7 
Y,(jw) = jw T 

2 + 1) (jw T3 + 1) 
(1.6-l) 

where K1,T1J2,T3, and r all vary with O,(t) and Y,(p). 

This form is the result of many tests and, having been averaged 

over many subjects, is an equation which should adequately represent 

the linear action of a typical subject in a compensatory control task. 

The general acceptance of this form is indicated by the number of 

researchers who continually compare their results with this transfer 

function. 

1. ‘7 The Crossover Model 

One of the more interesting results of the McRuer work is the 

postulation of a “crossover model’, [ 251 . It was discovered that for 

several first and second order controlled elements, the gain-phase 
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curves of the entire compensatory forward loop were of the same 

approximate form., This form, called the crossover model, was 

approximated by the transfer operator 

yp Y,(P) = 
Kc-7P 

P ’ 
(1.7-l) 

The gain-phase plot of this equation fits experimental magnitude data 

better than experimental phase data, but is generally a good fit to both 

in the crossover region, the crossover region being defined as that 

portion of the frequency spectrum near which 1 Yp YC (jw) 1 = 1. 

1.8 Descrintion of the Research 

The purpose of the research described in this report is the 

evaluation of the crossover model in the following manner: 

(1) To determine the feasibility of using the crossover model 

as the parameter tracking model of certain first and second 

order compensatory control systems. 

(2) To determine whether the crossover model gain K and 

time-delay 7 are good performance indices for measuring 

the differences between subjects, the difficulty of compensatory 

tracking tasks, and the learning rates of subjects. 

In addition, the following proposed contributions to the general’ 

methodology of continuous parameter tracking will be analyzed: 
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(I) A limited parameter adjustment technique to give smoother, 

less erratic performance. 

(2) A mathematical method for. determining the convergenc,e 

rate of the parameters, and the amount of parameter interaction, 

when the gradient gains are low and the input signal is a sinusoid. 

(3) A performance index that indicates how well the parameter 

tracking model compares with the optimum linear time- 

invariant model of the compensatory system. 

The presentation of this research is broken down in the following 

manner. Chapters 2 and 3 discuss the reasons for, and the develop- 

ment of, a continuous parameter tracking system utilizing the 

crossover model. Chapter 4 contains the theoretical and experimental 

analyses of the parameter tracking system when tracking a known 

model of the correct form. The limited gradient technique and the 

sinusoidal analysis based on the method of Kryloff and Bogoliuboff 

are also discussed in this chapter. Chapter 5 outlines the actual 

experimental work with human operators and presents the results of 

the tracking tests. Chapter 6 discusses the spectral tests that were 

run on the compensatory tracking data and gives the comparisons of 

these results with those obtained by the parameter tracking system. 
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The new performance index for evaluating the crossover model is 

also introduced at this point. Chapter 7 reviews the basic results 

of the research and lists areas where further study is needed. 
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Chapter 2 

ADVANTAGES OF THE CRGSSOVER MODEL 

There are many reasons for using the crossover model as the 

parameter tracking model of a compensatory control system, the im- 

portant ones being: (1) the simplicity of the model and the resulting 

improvement in parameter tracking stability; (2) the relatively 

small amount of equipment needed for implementation; (3) the fact 

that the gain-phase characteristics of the compensatory forward loop, 

as obtained by other researchers, can be matched very closely with 

the crossover model; (4) the fact that the crossover model output is 

most sensitive to parameter changes in the same region it most ac- 

curately describes human response; and (5) the fact that crossover 

frequency and gain-margin, two important control system charac- 

teristics, are located in the region of maximum model accuracy. 

These items will be discussed in this chapter. 

2.1 Stability and Equipment Considerations 

A basic problem with continuous parameter tracking systems, as 

with most gradient methods, is the problem of stability. Although the 

entire parameter tracking system is a nonlinear time-varying system 

that is very difficult to analyze, several general facts are known to be 

causes of concern. First, stability problems are known to arise from 
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the interaction that exists between the different parameter adjustment 

loops. Second, the time required for the parameters to converge to 

their final values from some set of initial conditions is dependent 

upon the number of parameters being identified. In fact, Bekey, 

et al. [ 71 have hypothesized that the settling, or convergence, time 

increases at a rate of 2n, where ,‘n,, is the number of parameters 

being tracked. 

It is quite evident that if a relatively stable system is desired, 

then every effort should be made to choose a model which not only 

models subject response, but also contains the smallest number of 

parameters. Previous parameter tracking models, such as those 

used by Adams and Bekey, have contained three or four parameters. 

Since the crossover model has only two parameters, the basic stabil- 

ity and convergence properties of the related tracking system should 

be noticably better than those used with the previously mentioned 

models. 

Another problem inherent with continuous parameter tracking 

systems is the amount of analog equipment necessary for implementa- 

tion. The computing capacity required increases at a faster rate than 

the number of parameters being tracked. This is especially true of 

multiplication circuits. Since many human performance researchers 

do not have large analog facilities, the two parameter model is again 

.more desirable than the’ three:or ‘four parameter models. 
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If the parameter tracking were to be done digitally, either on-line 

or off-line, programming and solution time considerations would still 

favor the two parameter model. 

2.2 Comparison of Crossover Model Gain-Phase Curves with 
Those from Other Models ~ 

The fact that the crossover model is desirable from stability and 

equipment viewpoints would be of little significance if the model gave 

a poor fit to experimental data. Fortunately, this does not appear to 

be the case, at least as far as the gross characteristics at frequencies 

near and below crossover are concerned. Examination of other re- 

searchers data shows that the gain-phase curves of the crossover 

model can be adjusted to match closely the curves that were found to 

represent the compensatory forward loop. This implies that K and 7 

should afford enough model adjustment to fit the compensatory tracking 

data nearly as well as models with more parameters. Two examples 

of this fact are given below. 

Figure 2.2.1 gives a comparison of the average compensatory 

forward loop gain-phase curves as determined by Todosiev, et al. [ 341, 

with the crossover model gain-phase curves, with K and T adjusted to 

give a best fit. Both perfect time-delay and first order Pade’approxi- 

mation phase data are given [ 361 . Referring to Fig. 1.1.1, the model 

configuration used by Todosiev was 
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Subject Model = z (p) = 
K1 (T1p+l) 

@, P + 1) (T3 P + 1) 

with the controlled element 

y,(P) = 5.15 
p(3p+l) l 

(2.2-l) 

Oi(t) was Gaussian white noise filtered by a low pass third order filter 

with a one radian per second cut-off frequency. 

Figure 2.2.2 gives a comparison of the average compensatory 

forward loop gain-phase curves as determined by Adams and Bergeron[ 31, 

with the crossover model gain-phase curves, with K and r again ad- 

justed to give a best fit. The pertinent information in this case is 

Subject Model = : (p) = 
(T + P)~ 

(2.2-3) 

and 

(2.2-4) 

O,(t) was obtained by passing Gaussian white noise through a low pass 

second order filter with a one radian per second cut-off frequency. 

In both Fig. 2.2.1 and Fig. 2.2.2 it is seen that the crossover 

model curves fit the experimental curves exceptionally well for 
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frequencies near and below crossover. At high frequencies the match 

is poorer. However, it should be remembered that the input power at 

frequencies above crossover is falling off at a rate of 12 or 18 db per 

octave, depending upon the filter being used. System identification in 

this region by any means is difficult due to the low power present. 

The important thing is that the crossover curves do match well in 

regions where there is appreciable input (and output) power. 

2.3 Sensitivity of the Crossover Model Output to Changes in I~.-- Ir 
Crossover Model Parameters 

From the comparison of the crossover model gain-phase curves 

with those obtained by other models, it can be concluded that the 

crossover model should be a reasonable model to use for certain 

systems. In light of the fact that McRuer ‘s original data indicates 

that the crossover model fits experimental data best in the crossover 

region, it is of interest to see in what frequency range the model output 

is most sensitive to parameter changes. It would be desirable for the 

system to be most sensitive in the same region that the model most 

accurately describes subject response. 

To investigate this area, sensitivity analysis will be used [ 30,351. 

This is a method which determines how the solution to a differential 

equation would vary if a small change was made in a parameter of the 
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differential equation at the start of the solution. For example, let 

x(t, X0) be the solution to a differential equation for a specific equation 

forcing function. X0 represents a specific value for an equation para- 

meter X. 

To a first approximation, the solution related to the same forcing 

function with h = hl = X0 + Ah is 

x6, X1) = x(t, X0) + g (t, x0) AX , (2.3-l) 

-where g (t, X,) is the sensitivity, or parameter influence, coefficient 

for h evaluated at X = X0. The equation for generating the sensitivity 

coefficient is derived under the assumption that all the parameters of 

the original equation are constant. Therefore, if any changes in the 

equation parameters are made during the course of a solution, the 

resulting transients must die out before the sensitivity coefficient is 

again accurate. This point will arise later in the report when sensiti- 

vity coefficients are used in the parameter tracking system. 

As noted functionally above, the sensitivity coefficient is a time- 

varying quantity that depends upon both the differential equation and the 

equation forcing function. In the vicinity of a given solution it re- 

presents the gradient, in the h direction, of the contour of the family 

of solutions obtained by using various values of h with the same 

forcing function. In the case of the closed loop crossover model it 
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is of interest to see how the model output signal is effected by small 

changes in crossover model parameters in the vicinity of their 

nominal values. 

The block diagram of the closed loop system containing the cross- 

over model is shown in Fig. 2.3.1. The system output is denoted as 

Z(t,K 7). 

The transfer operator relating Z (t, K, T) and Qi(t) is 

- 7P 
;(P,W)= Ke -7p - 

i p+Ke 

It follows then that 

g (t, K, 7) + K Z (t - T, K, 7) = K &(t - 7) 

(2.3-2) 

(2.3-3) 

or 

$$ (t,K,T) + K Z(to,K,T) = K Oi(to) , (2.3-4) 

where to e t - 7, so that Oi(to) denotes O,(t) delayed T seconds. 

To find the sensitivity of Z(t,K, T) to variations in K, Eq. (2.3-4) 

is differentiated with respect to K. 

& (t, K, 7) + K g (to,K, 7) = ‘i&o) - Z(‘o, K, 7) (2.3-5) 

or, by changing the order of differentiation, 
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Figure 2.3.1 Closed Loop Crossover Model. 
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+Kg(to,K,7)=el(to,K,7) . (2.3-6) 

By defining the sensitivity coefficient for K as 

uo(t, K, 7) = a~ A az (t,K,T) (2.3-7) 

Eq. (2.3-6) becomes 

ti,(t, K 7) + Kuo(to, K, 7) = el(to, K, 7) 9 (2.3-8) 

where the dot signifies differentiation with respect to time t. 

Equation (2.3-8) shows that u,(t, K, T), the sensitivity coefficient for 

-K, is directly dependent upon the error signal in the crossover model 

control loop. The error signal is dependent not only on the parameters 

K and T, but also ‘on the characteristics of the input signal O,(t). 

Before proceeding with the analysis of u,(t, K, T), the sensitivity equation 

for r will be developed. To do this, Eq. (2.3-4) is differentiated with 

respect to 7, under the assumption that the derivative 8Z (t, K, 7)/ 37 does 

exist. Cases can arise where the derivative will not exist, but these cases 

should not be encountered when using the type of input functions discussed 

in this report. The differentiation of Eq. (2.3-4) with respect to 7 gives 

a2z(t,K, 7) 
+ Kg (t,,K,7) + K 

mo, K, 4 ato aei(to) ato 
a7 at at l - . (2,. 3-9) 

0 
* 3TK at0 a7 

Since 

atO -=+-7)=-l , a7 
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and by noting that for any function f(to,K, T) 

$ k(t,, K, 7-j = af’t;;19 ‘) - f.$ = af’t;t;’ ‘) , (2.3-10) 

it follows that Eq. (2.3-9) can be put in the form 

- $ (to, K, 7) 
0 I 

- Z(t,, K, T) 1 
If the sensitivity coefficient for T is defined as 

u,(t,K,7) eg (WV) , 

Eq. (2.3-11) becomes 

(2.3-11) 

(2.3-12) 

ul(t,K, T) + Kul(to,K, T) = - K&l(to,K, 7) , (2.3-13) 

the dots again referring to differentiation with respect to time t. 

Comparing Eq. (2.3-13) with Eq. (2.3-8) it is seen that 

ul(t,K, 7) z - K u,(t,K, 7) , (2.3-14) 

the approximation required since initial conditions are not being specified. 
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The block diagram showing the interrelationship between the 

crossover model, uo(t, K, T) and u,(t, K, T) is given in Fig. 2.3.2. 

To investigate the frequency characteristics of uo(t, K, 7) and 

ul(t, K, T), the transfer operators relating them to ei(t) are developed 

directly from Fig. 2.3.2. 

el +UGT)= ’ 
i 1 + K e- ” 

P 

(2.3-15) 

and 

(2.3-16) 

From Eq. (2.3-14) it follows that 

+,K,T)= -Kp2e 
u1 ‘TP 

i b+KeeTp12 l 

(2.3-17) 

(2.3-18) 

The absolute magnitudes of Eqs. (2.3-17) and (2.3-18) as functions of 

the real frequency o are easily shown to be 
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Figure 2.3.2 Relationship Between the Crossover Model 
and the Parameter Sensitivity Equations. 
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and 

> @,K,T) = 
w (2.3-19) 

i K2 cos’ 07 + (CO - K sin 07)~ 

u1 8 (jo,K,T) = Ku2 . (2.3-20) 
i K2 COs’ 07 + (CO - K sin WT)2 

In order to check the general characteristics of uo(jw, K, T) and 

ul(jw,K, T), the frequency can be normalized by letting 

V=OT . (2.3-21) 

Using this substitution, Eqs. (2.3-19) and (2.3-20) can be reduced to 

the dimensionless equations below: 

i > @,K,T) = 
V 

i (KT)~ cos’ v + (v - KT sin v)~ 
(2.3-22) 

i 2 @,K,T) = 
V2 . (2.3-23) 

i (KT)~ ~0s’ v + (V - KT sin v)~ 

The denominators of these equations are identical and depend only 

upon the normalized frequency v and the dimensionless product KT. A 

review of other researchers data indicates that the variable KT is fairly 

constant, usually falling in the range of 0.9 to 1.25. This is related to 

the fact that subjects generally adjust the compensatory system so that 
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the phase margin is fairly constant. For the crossover model, the 

phase margin in radians is 1~ - i -07=x 
2 - 07. However, at cross- 

over, 1 WI = 1 K 1 so that the phase margin is f - KT radians. With KT 

in the range given above the phase margin is 21 to 39 degrees. This 

is fairly constant considering that it is true for nearly all subjects in 

various low order compensatory control systems. It should also be 

noted that since the crossover frequency in the original system was at 

Id = IKI, in the normalized system the crossover will be at v = KT, 

which as noted above is approximately one. 

Figure 2.3.3 contains the plots of 

$ > (jv,K,7) 
i 

and 

u1 $ 8 hK7) 
i 

evaluated at KT = v crossover = 1.25. This is at the upper limit in 

terms of the normalized crossover frequency and, as such, represents 

a worst case in that the crossover model must represent the compen- 

satory system over the widest probable frequency range. The curves 

in Fig. 2.3.3 also are the curves that would exist for G uotiv, K, 7) 

and $ I ul~jv, K, T) 1 if ei(t) were white noise with a zero db power 

level and KT = 1.25- 
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It is seen that the sensitivity coefficients are maximum just above 

the crossover frequency. This fact is not surprising when one remem- 

bers that the closed loop crossover model responds somewhat like an 

underdamped second order system with a resonant peak near crossover 

frequency. Since the product KT determines the phase margin of the 

system, and thus the characteristics of the system in the crossover 

region, one would expect the maximum sensitivity to be in this general 

section of the frequency spectrum. The important fact is that the 

crossover frequency is located in the region of high sensitivity. 

Figure 2.3.4 shows the absolute magnitudes of the sensitivity 

coefficients under the same general conditions as above, with the 

exception that Bi(t) is now bandwidth limited white noise. A third 

order filter of the form 

1 

(TP + 1)3 
(2.3-24) 

is chosen with T = l/2 second. Assuming a nominal value of 

T = 0.25 seconds, the filter cut-off frequency is at 

v =(“;~~;~;s) (0.25 seconds) = 0.5 , 

which is four-tenths of the crossover frequency in the system dis- 

cussed above. This relationship is commonly found in subject testing. 

In this case, the sensitivity coefficients have had the height of 
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their peaks reduced, although the location of maximum sensitivity 

is unchanged. 

It can be visualized that a cut-off frequency chosen far below 

crossover would completely eliminate the peaks near crossover. This 

relationship between cut-off frequency and crossover frequency is 

quite important when parameter tracking is being used. If the cross- 

over parameters are to be tracked with maximum accuracy, the 

sensitivity equations must be maximum in the region of crossover, 

and 19#w) must have sufficient power at crossover. This indicates 

that care must be taken when choosing input spectral characteristics. 

This point will be discussed further in Chapter 6. 

Another point of interest in Fig. 2.3.4 is that ul (jv, K, T) is less 

sensitive to low frequencies than is uo(jv,K, T). This point will arise 

in Chapter 4 when the convergence properties of the parameter tracking 

system are evaluated. 

Later in the report the pure time-delays present in the crossover 

model and in the sensitivity equations will be replaced by the first 

order Pad&approximation given in Eq. (2.3-25) [36]. 

2 
-Tp,?- P 

e =- 
2 
y+P 

. (2.3 -25) 

When this approximation is evaluated with p = jo, the magnitude is 
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found to be unity at all frequencies, just like the pure time-delay. 

The phase characteristics of the approximation are equivalent to those 

of the pure time-delay at low frequencies, but differ markedly at 

higher frequencies. Fortunately, the phase characteristics of the 

approximation are quite close to those of the pure time-delay at 

frequencies near and below normal crossover frequencies. This is 

the same range of frequencies in which nearly all of the input and 

output power is located. 

Figure 2.3.5 gives a comparison of the phase characteristics of 

the two sides of Eq. (2.3.25). 

To check the effect of the Pade’approximation on the sensitivity 

equations, Eq. (2.3-25) is used in Eqs. (2.3-17) and (2.3-18). The 

approximate sensitivity equation which result are as follows: 

p(>-p”> _- 
[P2+(;-K)p+F] 

and 
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u1 
e (PJV-) = 

i 2 (2.3-27) 

The absolute magnitudes of these equations as a function of the 

real frequency 0 are 

U 
5 (jw K, 7) 

i 

and 

u1 8 h K, 7) 
i 

(2.3-28) 

If the last two equations are normalized as before, by letting 

v = 07, the equations become 

1 u. 7 -g- (jv,K, 7) = v(v2 + 4) 

i (2KT - v2)2 + (2 - KT)~ v2 
(2.3-30) 

and 

u1 
$ +~v,K,T) = 

v2(v2 + 4) (2.3-31) 
i (2KT - v2)2 + (2 - KT)~ v2 

Evaluating Eqs. (2.3-30) and (2.3-31) at the nominal value of 

KT = 1.25 as before gives the curves of Figs. 2.3.6 and 2.3.7 for the 
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unfiltered and filtered input cases, respectively. Comparing these 

figures with Figs. 2.3.3 and 2.3.4 it is seen that the approximation 

is quite good for frequencies at and below the crossover frequency of 

v = 1.25. In the bandwidth limited cases the magnitude of the error 

due to the approximation is 2 db at crossover with smaller errors 

below this frequency. The approximation is thus fairly good up to the 

point where the input is down 30 db. The crossover frequency in the 

Pad& approximation case is still located in the region of maximum 

sensitivity. 

Due to the additional amount of computing equipment needed to go 

from a first order Pade’approximation to a more accurate second 

order approximation, plus the fact that input power above crossover 

is extremely low, it .was decided to use a first order approximation 

in the crossover model. 

2.4 General Conclusions on the Crossover Model 

In light of the facts discussed in the first three sections of this 

chapter, it was concluded that the crossover model, or an approxi- 

mate version of it, would be an excellent candidate for a parameter 

tracking model. The approximate model is simple, easy to implement, 

and appears to match other researchers data when the controlled 

element is of first or second order. The model output will also be 

most sensitive to parameter changes in the same region it most 

accurately describes human response, if the input is chosen properly. 
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For these reasons, the decision was made to evaluate a para- 

meter tracking version of the crossover model in some detail. 
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Chapter 3 

PARAMETER TRACKING CIRCUIT DEVELOPMENT 

3.1 Basic Theory 

In the development of the parameter tracking system it is assumed 

that the basic equation of the system being tested is known [ 7,23,35] . 

The coefficients of the differential equation are to be determined by 

the tracking system. 

Let it be assumed that the system being identified-hereafter 

called the real system-is adequately described by the linear con- 

stant coefficient differential equation 

N 

c 

dn co(t) M 
a = 

n dt” c bm 

d” e,(t) 

dt” ’ 
(3. l-l) 

n=O m=O 

where 8$t) is the input and co(t) the output of the real system. 

Under the assumption that the form of Eq. (3.1- 1) is known, the 

parameter tracking model-hereafter called the assumed model-can 

be defined by the equation 

N M 

Y cy 9 z(t,ca = 
at c ‘rn 

a” k(t) 

2.m 
? (3.1-2) 

/In 
n=O m=O UL 

where 
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Partial time derivatives are used in Eq. (3.1-S) since g and pare 

free to be changed and will affect the assumed model output, 

Z(t, z, p’>. The assumed model has the same form, and the same input, 

as the real system. The assumed model output Z(t, g, p) may differ 

from the real system output Qo(t), because z # zand/or p # g. 

In order to force z - a’and p- g, and thus Z(t, z, p’, - Qo(t), 

the coefficients of the assumed model are adjusted in some manner 

so as to force some function of the model error toward zero. The 

model error is defined as 

Z(t,Z, p’, - e,(t) = e&Z, F) 

in the “output error” method used in this report [ 71’. 

(3.1-3) 

1 
An alternate method called the “equation error” method uses an 

error defined as [ 191 

N M 

c 
cy an ut,%,B _ am e,(t) 

n 
n=O atn c ‘rn atm 

= e(t,S,P’) . 

m=O 
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One common method of parameter adjustment is obtained by 

defining the index of performance of the model as 

I&&P’, =; (3.1-4) 

and determining 

aI 
aai @iy s,p) , i=l,2, . . . . , N 

(3.1-5) 

$f (t,,z,p) , j = 1,2, . . . . , M . 
ii 

Once Eqs. (3.1-S) are known, the parameters z and pcan be step 

changed by an amount A; and Ap at time t, through the use of the 

gradient adjustment equations 

l. 

A y(tl, z, p) = - ki $- (t 
i ’ 

zp’, ,i=l,...., N 

(3. l-6) 

Aaj(‘l,‘,8) = - kj ~ (tI,~,~) , j=l,...., M. 
j 

These step changes are made repeatedly each T seconds, and gradually 

drive the performance index, and the model error, toward zero. The 

size of each step, and hence the convergence of the process, is de- 

pendent upon the gradient gains k as well as the size of the components 

of the gradient. 
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Since the coefficients of the assumed model are constant during 

each performance measuring interval, the gradient equations can be 

evaluated in a straight forward manner. 
2 

First it is noticed that 

l(tl,cy, p’> = ; 
5 2 e (t, z,p) dt 

2 
tl - T 

(3.1-7) 

and 

e$ (t,g,E)dt . (3.1-8) 
i 

However, 

e(t, Z, p’> = Z(t, 7;, p’> - co(t) (3.1-9) 

and 

a4tZa’) = az(t,C& gu (t ; P’> 
aai acti i” . 

It follows then that Eq. (3.1-8) reduces to 

(3.1-10) 

2 See Appendix F for some observations on the iterative adjustment 
technique. 
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T&p’> =f e ui(t, g, p) dt . (3.1-11) 

5 

The gradients with respect to the CY~ can thus be determined from 

Eq. (3.1-11) if ui(t, i?, p) k g (t, g, p) can be obtained. Similar re- 

s- (t 
i 

sults hold for api 1, G,$). 

To find ui(t, z, p) the partial derivative of Eq. (3.1-2) is taken with 

respect to cyi. This gives, 

N r 
a =-L n=O 

aai ‘n 
an at,3 = 

atn 1 
M 

c 
m=O 

‘rn 

atrn+l) e (t) i 

aai at” 
. (3.1-12) 

Since ei(t) is not a function of g, the right side of Eq. (3.1-12) 

is zero. By interchanging the order of differentiation with respect to 

t and ai, the left hand side of Eq. (3.1-12) becomes 

N 

Y (Y a n az(t,S,p’) 
[ 1 -2; 

+ ai z(t,CB _ o 
73+ i - ’ /1 n at”1 d’ I J n=O VI. 

Using the identity in Eq. (3. l-lo), Eq. (3.1-13) reduces to 

N 

c 

an u&t, 3, p’> 
cy = _ ai z(t&i3 . 

n 
n=O atn at1 . 

(3.1-13) 

(3.1-14) 
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Equation (3.1-14) is the sensitivity equation for ai. ui(t, z, p) can 

be solved for continuously on an analog computer by solving the above 

equation. The characteristic equation of this system is exactly the 

same as for the real system. The forcing function, however, is a 

signal taken from the assumed model. 

To determine the other gradient equations, a similar procedure is 

followed. To solve for all N + M gradient equations, N + M sensitivity 

equations of the form above must also be solved. 

3.2 Continuous Parameter Tracking 

In the continuous parameter tracking method the time interval over 

which the index of performance is measured is collapsed to zero. The 

index of performance then becomes an instantaneous index 

I(t, G(t), p’(t)> = f @, w, m> * (3.2-l) 

The functional notation z(t) and p’(t) denoting the fact that the coef- 

ficients of the assumed model may be varied continuously. 

Although the coefficients of the assumed model are mechanized 

so that they can be adjusted continuously, the gradient and sensitivity 

equations are still derived under the tacit assumption that the coef- 

ficients of the assumed model are constant. The equations are conse- 

quently erroneous when coefficients are changing, but converge to the 

correct equations as z(t)-3 and p(t)- c. 
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This method was used for the parameter tracking portion of the 

experimental work of this report. However, rather than developing 

a general approach of this method at this point, the mechanics of 

implementation will be introduced for the specific problem solved in 

Section 3.4. 

The original thinking behind the continuous performance index was 

that sudden changes in the human describing function could be picked 

up quickly by the tracking system. In practice this has not been the 

case. The presence of uncorrelated signals in the system dictates 

low gradient gains and fairly slow convergence rates on the coef- 

ficients. Sudden changes are thus not tracked too effectively as will 

be shown in Appendix C. 

3.3 Open vs. Closed Loop Tracking 

The basic real system under test in this research is assumed to 

be the closed loop system given in Fig. 1.5.1 with 

yp y,(P) = 
K* e-‘*P 

P l 

(3.3-l) 

This real system assumes that the best linear operator for the 

forward loop of the compensatory system is the crossover model. 

If a parameter tracking model of this system is to be chosen, the 

choice must be made between: 
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(1) Picking an assumed model consisting of only the forward 

loop, 

$Q-;Tp (3.3-2) 

and driving the assumed model with c(t), or 

(2) Picking an assumed model consisting of the closed loop system 

$ w = K esrP 

i p+KemTP 
(3.3-3) 

and driving the assumed model with e,(t). 

On the surface these two methods appear to be equivalent, but 

Elkind [ 111 and Jones [ 201 have both noted that the results of these 

two methods may not be the same. The reason for this difference is 

that in the forward loop case the assumed model input will contain 

human generated noise, while in the closed loop case the noise is not 

applied directly to the assumed model. Elkind and Jones show that the 

expected effect of the noise is zero in the closed loop case, while it 

will bias the coefficients obtained in the open loop case. 

Since the original crossover model was developed from the ratio 

~iociw) 
yP yctiw) = C&I) ’ 
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it should not have been influenced by noise and thus be compatible 

with the closed loop method. For this reason the closed loop 

method was used. 

3.4 Development of the Crossover Model Parameter Tracking 
Equations 

The closed loop equation of the real system using the McRuer 

crossover model for the forward loop is 

d e,(t) 
dt + K* eo(t - T*) = K* ei(t - 7*> . (3.4-l) 

The assumed model is thus chosen to be 

am, K 7) 
at +KZ(t-7, K,T)=K&(t-7) . 

If the index of performance is taken as 

2 
I(t, K, 7) = $ (t, K, 7) (3.4-3) 

where 

(3.4-2) 

e(t, K, 7) = at, K, 7) - co(t) , 

and if K and 7 are assumed to be constant, then 

(3.4-4) 

aI ae = (t, K, 7) x=ez=eaK 

and 

aI ae az 
z=ez=e-&t,K,7) . 

(3.4-5) 

(3.4-6) 
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By defining 

uo(t, K, T) e g 6, K, 7) 

and 

ul(t,K,T) eg (t, K, 7) 

it follows from Eqs. (3.4-5) and (3.4-6) that 

(3.4-8) 

g (t, K, 7) = e uo(t, K, 7) (3.4-9) 

and 

(3.4-7) 

g (t,K, 7) = e ul(t,K, 7) . (3.4-10) 

The sensitivity equations needed for generating uo(t, K, T) and 

u,(t, K, 7) are obtained by taking the partial derivatives of Eq. (3.4-2) 

with respect to K and r, assuming again that K and 7 are constants. 

These equations have already been developed in Chapter 2, as 

Eqs. (2.3-8) and (2.3-14). They are repeated here for convenience. 

auO at (t,K,?-) +Kuo(t - ~,K,T) = el(t - T,K,~) (3.4-11) 

and 

Ul(t,K, 7) = - K 

auo(t, K, 7) 

at ? (3.4-12) 

where 
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e,(t,K,T) = Z(t,K,r) - O&t) . (3.4-13) 

3.5 The New Parameter Adjustment Equation 

The conventional continuous parameter adjustment equation for 

the parameter K is [ 7,231 

AK(t) = - kK g (t, K, 7) = - kK e uo(t, K, T) . (3.5-l) 

However, during the course of the experiment it was discovered that 

the uncorrelated portion of the model error e(t, K, T) caused the cal- 

culated values of K(t) and T(t) to behave erratically at times. This was 

especially true in the cases where the subject task could be considered 

difficult. 

In an effort to reduce large variations in K(t) and T(t) after and 

during convergence, a new parameter adjustment method was introduced. 

The new adjustment scheme limits and smooths the signal appearing on 

the right hand side of Eq. (3. 5-l) before equating it to AK(t). This is 

nothing more than a straightforward method of eliminating all rapid 

changes in the parameter. 

The new adjustment equation is 
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AK(t) = kK% (5,K,T) h(t - 5)d5 

-a 3 

(3. 5-2) 
t 

= .I [ sat - kKeuo(t, KJ) h(t - Hdt 
-co I 

for K(t), with a similar one used for T(t). h(t) is the impulse response 

of a smoothing filter and the sat [y] function is defined as 

sat[rl =y p -L<y<L - - 

= L sgny , lyl > L . 
(3.5-3) 

In practice the value of L is chosen empirically, so that the limiting 

is not too severe. It will be shown in Section 4.8 that the limiter will 

not bias the results if certain conditions are met. In addition the sat 

function will be shown to have a general stabilizing influence on the 

tracking system. The smoothing filter used in all tests was of first 

order with a time constant of one second. 

The net effect of the new parameter adjustment method is a non- 

linear smoothing of the values K(t) and T(t) when large disturbances 

enter the system in the form of remnant signal. 

3.6 Parameter Tracking Circuit 

The equations necessary for the complete implementation of the 

continuous parameter tracking system are (3.4-2), (3.4-ll), (3.4-12), 
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(3.‘5-2) and an equation equivalent to (3.5-2) for the adjustment of r. 

The complete block diagram of the parameter tracking system is 

given in Fig. 3.6.1. The complete analog circuit diagram is given 

in Appendix A. 

It should be noted in each diagram that the first order Pade’ap- 

proximation given in Eq. (2.3-25) has been used in place of pure time- 

delay. This has been done because of the ease of analog implementation. 

It will be shown in Chapter 4 that this substitution is equivalent to 

redefining the original crossover model as having first order Pade’ 

time-delay. The real system being identified is thus essentially 

redefined as having 

(3.6-l) 

for the forward loop. 

3.7 Modified Block Diagram of the Real System Being Identified 

In addition to changing the pure time-delay to a first order Pad& 

approximation, one other modification of the real system block diagram 

is useful. This pertains to the location of the injection of the remnant 

signal. 

Since the effect of the remnant signal enters the parameter track- 

ing system only through Oo(t), there is no reason why the entire 
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Figure 3.6.1 Block Diagram of the Parameter Tracking System. 
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remnant cannot be defined as being injected at the real system output. 

It will become evident in the following chapters that the mathematical 

notation is greatly simplified if this change is made. Fig. 3.7.1 

gives the final block diagram of the real (compensatory) system being 

identified. The notation introduced in this figure will be used through- 

out the rest of the report. 
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Chapter 4 

PARAMETER TRACKING SYSTEM EVALUATION 

The crossover model parameter tracking equations were developed 

in Chapter 3 under the assumptions that pure time-delay was present 

in the system, and that the parameters K and r were constant. These 

equations were implemented, however, with a first order Padgap- 

proximation for time-delay and both parameters tracking continuously. 

The theoretical and experimental work of this chapter is intended to 

show that if the parameter tracking system is tracking a fixed real 

system whose form is the same as that of the implemented assumed 

model, then K(t) - K* and T(t) - r*, providing the gradient gains and 

input signals are properly chosen. 

4.1 Theoretical Stability Analysis 

The general problem of stability in the large for output error 

continuous parameter tracking systems has not been solved. Margolis 

has analyzed stability in the small for systems tracking known models 

of first and second order with step, ramp, and acceleration inputs [ 231. 

He also showed that when the input is a sinusoid, and the known model 

is of first order, then the linearized equations are transformable into 

a standard Mathieu equation. There is no evidence in the literature 
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that the stability in the small of output error continuous parameter 

tracking systems has been determined for sinusoidal inputs, when the 

system being tracked is of order greater than one. Needless to say, 

the random input case is also unsolved [ 191. 

The theoretical analysis of the crossover model parameter tracking 

system used in the present research is composed of three main parts: 

(1) an investigation of the stability in the small for step, ramp, and - 
_ 

acceleration inputs, where K(t) and T(t) are being tracked singly and 

.simultaneously; (2) an approximate method patterned after the method 

of Kryloff and Bogoliuboff for determining the dominant convergence 

time constants of the parameters. This is for the specific case of 

low gradient gains and sinusoidal inputs; (3) an investigation of the 

effect of the new limited gradient technique on parameter convergence. 

The application of the method of Kryloff and Bogoliuboff is shown 

to be extendible to random inputs, and gives considerable insight into 

the problem of parameter tracking interaction. 

4.2 The Basic State Variable Equations of Motion 

Figure 4.2.1 is a simplified block diagram of the crossover model 
_ - 

parameter tracking system when tracking a known real system of the. 

correct form. The state variables xi(t), i-= 1,2, . . .- ,* lo-are 

defined as the integrator out&s. It will be noted that the limiters that 

were used at times in the gradient equations have not been included. 
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Figure 4.2.1 State Variable Block Diagram. 
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This is because all analyses will be made in the neighborhood of the 

desired solution with e(t, K;T) small and the signals through the limiter 

assumed to be operating in the linear region. The case of limited 

action will be discussed in Section 4.8. 

The equations of motion for the basic system are found to be 

% = K*[ x1 + 2x2 - I%] 

i2 =7* 2 [-x1 - x2 + &] 

x3 = x,[ x3 + 2x4 - &] 

84 =%I 2 [-x3 - x4 + 6x1 

. 
=x +2x +xx -2xx -8 x5 3 4 57 67 i 

. 
x7 = - kK x9 

jr, = - kT x1o 

jE9 = + [(x, - x1) x5 - x9] 

(4.2-l) 

ilO = + [(x3 - x1)(-x,)(x3 +~2x4 +x5x, - 2x6x7 - ei) - x1 J 
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4.3 Step Input Signals 

The use of step functions as desirable input signals can be dis- 

counted with the following reasoning. If Q,(t) is a step function and the 

system ever does reach steady state then x1 (t) = x,(t) 3 e (t, K, T) = 0, 

even if x,(t) = K(t) is a constant other than K* and x,(t) = T(t) is a con- 

stant other than r*. This is due to the fact that both the known model 
-._. 

and the assumed model are type one control systems with zero steady 

state errors for step input signals. It can be concluded that a step 

input signal does not give the tracking system enough information for 

the determination of either parameter. A more “active” input is 

required. 

4.4 Ramp Input Signal, Single Parameter Tracking 

As a starting point, a single parameter tracking case will be 

analyzed. Let x,(t) = T(t) = r* and x,(t) = K(t) be tracked alone. 

Equations (4.2-l) are still in effect with the exceptions that the 2, 

. 
and xl0 equations can be eliminated because x8 is held constant. 

The new equations of motion are given in Eq. (4.4-l). 
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jr, = K*[ x1 + 2x2 - &] 

f2 = -+ 2 [-x1-x2+&] 

. 
x3 =x+x3 + 2x4 - ei] 

k4 = 7* 2 [-x3 - x4 + ei] 

(4.4-l) 

. 
x6 =- 2 Ix5 - x61 

jr, = y IL [ (x3 - Xl> x5 - x91 

If Qi(t) = Vt, a ramp input, the perturbation variables yi, 

i=l,2, . . . , ‘7 and 9, can be defined around the desired steady state 

solution as x. = x. 1 1SS + yi, where x iss is the steady state solution. 

These equations are given in Eq. (4.4-2). 
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x1 = v(t -&)+Y1 

J+y 
x2 K* 2 

x3 = v(t -&)+Y3 

V 
x4 = K* + Y4 

V 
x5 = K*2 + y5 (4.4-2) 

J+y 
x6 K* 6 

x7 = K* + y7 

x9 = Yg 

By placing the perturbation equations (4.4-2) back into the 

equations of motion (4.4-l), and ignoring second order and higher 

terms, the linearized equations reduce to Eq. (4.4-3). 

. 
‘j;=AY 

where 

Yl 
. 

‘j;= : 

II 
. 

y7 
y9 

, 3=&[T;l , 

(4.4-3) 
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and 

A= 

- 
K* 

2 -- 
r* 

0 

0 

0 

0 

0 

V -- 
K*2T 

- 

2K* 

2 -- 
r* 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 0 0 

0 0 0 0 

K* 2K* 0 0 V 
K* 

2 -- 
r* 

2 -- 
r* O 0 0 

1 2 K* V -2K* _- 
K*2 

0 

0 

0 

V 

K*2T 

0 0 0 0 

0 0 0 0 

0- 

0 

0 

0 

0 

0 

-kK 

1 -- 
T 

. (4.4-4) 

To determine the stability of Eq. (4.4-3), the eight eigenvalues 

of matrix A are solved for in the usual manner by setting 

det [A - XI] = 0 . (4.4-5) 

This equation is found, after some manipulation, to be factorable 

into the three equations given below. 

A2 + 

(4.4-6) 

(4.4-7) 
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It is seen that four of the eigenvalues of A are fixed by K* and r* 

and consist of two pairs of equal roots. As was found by Margolis, 

each pair of these roots is identical with the roots of the known model. 

In fact, one pair belongs to the known model and the other pair to the 

assumed model. If the known model is stable, these four roots will 

automatically have negative real parts and thus be stable. 

The four roots defined by Eq. (4.4-8) are functions of the gradient 

gain kK and the slope of the input ramp, V. These roots are easily 

analyzed by drawing their root locus plot. Equation (4.4-8) is, there- 

fore, rearranged into Eq. (4.4-g). 

(4*4-g) 

The root locus plot of this equation is given in Fig. 4.4.1 with the 

gain variable being V2 kK/T K*3. 

The open loop, or zero gain, poles of Eq. (4.4-9) are readily 

identifiable. One real pole is due to the gradient filter and the other 

due to the gradient integrator. The complex poles are the same as the 

closed loop poles of the known model. 

By referring to Fig. 4.4.1 it can be seen that the four gradient 
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0 = Closed loop pole. 
X = Open loop pole. 
0 = Open loop zero. 

Figure 4.4.1 Root Locus Plot of Gradient Gain Dependent 
Roots- Q,(t) = Vt-K(t) Tracking.Alone. 
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gain dependent roots will all have negative real parts if % is chosen 

properly. Therefore, all eight of the characteristic roots of A will 

have negative real parts if: (1) the known model is stable; and 

(2) kK is chosen properly. It is evident that the system can be made 

stable and ie oc) x7(t) = K* [ 81. 

Several items are important to note with respect to Eq. (4.4-9). 

First, the effective gain variable for this portion of the system is 

kKV2/T K*3, which indicates that stability is directly effected by 

the input slope. Second, the effect of changes in the input slope can be 

offset by a suitable change in gradient gain. Third, by referring to 

Fig. 4.4.1, it is seen that for low values of kK, the dominant root is 

a single real root located near the origin. The basic response for low 

gradient gains should therefore be first order. This result will be 

found to be present with all types of inputs. 

If x7(t) = K(t) is held constant at K*, and T(t) = x,(t) is tracked 

alone, the basic equations of motion are 
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% = K* [x1 + 2x2 - &] 

. 

x2 =G 2 [ - x1 - x2 + ei] 

. 
x3 

=K*[x3+2X4-&] 

H4 =xs 2 r-x3 - x4 + &] 

f5 3 4 =x +2x +K*x 5 - 2K*x6 - Bi 
(4.4-10) 

% =xs 2 [x5-x61 

‘8 = - k7 xl0 

- x1)(- K*)(x3 + 2x4 + x5 K* - 2x6K* - &) - xl01 

These are obtained from the general case given in Eq. (4.2-l) by 

merely eliminating I$, and 2 g, which are not relevant since x7 is being 

held constant at K*. 

If e,(t) = Vt , the perturbation variables can be defined as 
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xl =v t-& +yl 
( ) 

x2 K* =v+y2 

x3 =v t-j$ +y3 
( ) 

V 
x4 =K*+y4 

V 
x5 =K*2+y5 

V 
x6 = 2 + ‘6 

x8 =7*4-y 8 

x1o = YlO 

and the perturbed equations of motion reduced to 

s 
Y = B3; +FG, y,) 

‘8 = - k7y10 

. 

YlO = 
-- ; Yl() + d3 

(4.4-11) 

(4.4- 12) 

where 
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B= 

y1 
. 
. 
. 

,y6 

K* 2K* 0 0 0 0 

2 2 7* -7* 0 0 0 0 

0 0 K* 2K* 0 0 

0 0 --$ -$ 0 0 

0 0 1 2 K* -2K: 

0 0 0 0 3 --$ 

Y (4.4 -13) 

and ?G, y,) and g(F) contain only second and higher order terms of the 

perturbation variables. 

The additional approximation required to get Eq. (4.4-12) from 

Eq. (4.4-11) is 

1 1 1 =- 
r* +y8 r* [ 1 ‘8 

(4.4-14) 

l+T;;i; 

Matrix B can be shown to have all stable roots. Equation (4.4-12) 

is thus stable, but not asymptotically stable [ 231. y,(t) will approach 

a constant with increasing time, but this constant may not be zero. 
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This implies that x,(t) will also approach a constant, but this constant 

will not be 7*. 

This can be explained by examining the steady state signals in 

the block diagram of Fig. 4.2.1. Since x,(t) is a ramp, x,(t) is a 

constant. The signal through the Pad&time-delay unit in the steady 

state must also be a constant. The value of r is therefore unimportant 

in the steady state when Bi(t) is a ramp. This is another situation in 

which the input signal is not active enough to enable determination of 

the parameter being tracked. 

The fact that a ramp input is sufficient to determine K*, but not 

7*, is the first indication that more active inputs are required for 

determining time-delay than for determining gain. However, it has 

already been noted in Chapter 2 that for low frequency inputs the 

output of the crossover model is more sensitive to changes in crossover 

model gain, than to changes in crossover time-delay. (See Fig. 2.3.3). 

This low sensitivity at low frequencies is directly related to the diffi- 

culty of tracking T(t) with a ramp input. 

4.5 Acceleration Input, Single Parameter Tracking 

In order to evaluate the convergence of T(t), assume again that 

x, = K*, but let ei(t) = at2/2. Equations (4.4-10) are still the basic 

equations of motion, but the perturbation variables yi are now defined 

as 
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x3 =a +Y3 

x5 =a 5 
(4.5-l) 

x6 =a 6 

x8 = r* ‘y8 

xlo = y10 

By placing Eq. (4.5-l) back into Eq. (4.4-lo), the following linearized 

equation can be obtained. 

;zc3; (4.5-2) 

where 
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and 

c= 

K* 2K* 

2 2 _- -- 
r* r* 

0 0 

0 0 

0 0 

0 0 

0 0 

a I- 
TK* 

0 

w 

Yl 

. 

. 

. 

y6 

y8 

y10 

0 0 0 0 0 

0 0 0 0 0 

K* 2K* 0 0 0 

2 2 -- -- r* 0 0 -a 
r* r* K* 

1 2 K* -2K* 0 

0 -g --g 
-a 

r* K* 2 

0 0 0 

a -- 
TK* 

0 0 0 0 

0 

0 

io 

0 

0 

0 

-k7 

1 -- 
T 

. (4. 5-3) 

To determine the stability of Eq. (4. 5-2), the eigenvalues of the 

matrix C are determined by solving 

det [C - hII = 0 . (4.5-4) 

This equation can be factored into the three equations given below: 
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A2 + (4.5-5) 

A2 + (4.5-6) 

The situation is similar to that found when tracking K(t) when the 

input was a ramp. Four of the eigenvalues are determined completely 

by the values of K* and T*, and coincide with the closed loop roots of 

the known model. The other four eigenvalues are functions of the 

gradient gain and the input signal. 

The eigenvalues that are functions of gradient gain will again be 

analyzed through the root locus approach. Equation (4. 5-7) is there- 

fore rearranged into the correct form given in Eq. (4. 5-8). 

The root locus plot associated with this equation is given in Fig. 4.5.1. 

It is seen that all four roots will be stable if k7 is chosen properly. 

The entire system defined by Eq. (4.5 -2) will thus be stable if: 

(1) the known model is stable; and (2) k7 is chosen properly through 

the use of Fig. 4.5.1. 
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2a2k 
Gain constant. = T K* Ti = G 

I 

T=l a ” 
K*=6.0 \ 
7* = 0.2 G = 2200 --j 5 

X = Open loop pole. 
l = Closed loop pole. 

G = 2200 
/ 1 -j5 

Figure 4. 5.1 Root Locus Plot of Gradient Gain Dependent 
Roots - ei(t) = at2/2- T(t) Tracking Alone. 
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The zero gain poles of Fig. 4. 5.1 are again identifiable. The 

real poles correspond to the gradient integrator and the gradient 

filter, while the complex poles are the same as the closed loop poles 

of the known model. 

4.6 Ramp and Acceleration Inputs, Both Parameters Tracking 

If an attempt is made to analyze the stability of the system with 

both parameters tracking and O,(t) a ramp, the linearized equations 

are stable, but not asymptotically stable. This is the same type of 

condition that existed with a ramp input when 7(t) was being tracked 

alone. 

It can be deduced that the two parameter tracking case calls for an 

input of higher order than a ramp. However, if a higher order input 

such as an acceleration or a sinusoid is used, the linearized equations 

are time-varying and appear to be difficult to solve analytically. 

Rather than proceeding further with a conventional linearized 

stability analysis, which presents considerable difficulties, a new 

approach was adopted. This method is discussed in the next section. 

4.7 Sinusoidal Stability Analysis Using the Method of Kryloff 
and Bogoliuboff 

The sinusoidal stability analysis of the parameter tracking system 

is based on the following conditions: 
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(1) 

(2) 

(3) 

(4) 

The tracking system is tracking a known real system of the 

correct form with crossover gain K*. and first order Pad6 

time-delay T*. 

The input signal is a single sinusoid with a frequency in the 

general region of crossover. The exact frequency is arbitrary, 

but ‘must be in a region where the assumed model output is 

sensitive to parameter variation. 

The convergence properties will be investigated only in the 

neighborhood of the desired solution K = K* and r = r*. 

The gradient gains kK and k7 are low. 

Under these conditions the convergence (or divergence) rates of 

K(t) and T(t) can be made as slow as desired by reducing the gradient 

gains. The rates of change of K(t) and T(t) can be made slow with 

respect to the decay rates of the dominant transients of the assumed 

model, the sensitivity equations, and the gradient filters. 

In the neighborhood. of the desired solution the signals Z (t, K, T), 

uo(t, K, T), u,(t, K, T), AK@, K, T) and iT(t, K, 7) are all assumed to be in 

a quasi-steady state condition, with their amplitudes and phases being 

slowly modulated by the changes in K(t) and T(t). In particular, it is 

assumed that when 

ei(t) = D sin ot (4.7-l) 

then 
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e,(t) = A* sin(wt + +,*) 

Z(t,K,T) = [A* + AA(t)] sin(ot + +/,* + A@,(t)) 

uo(t, K, 7) = [B* + AB(t)] sin(wt + ql* + +,* + Aq2(t)) 

u,(t, K, 7) = - Kuo(t, K, 7) = - [K* + AK(t)] uo(t,K, 7) (4.7-2) 

= - 0 [K*B* + K* AB(t) + B* AK(t)] cos(wt + $* + */,*> 
1 

- K* B* Alc/,e) sin(ot + Ql* + +,*) 
i 

The last equation was developed under the assumption that 

$ [B* +m(t)] sin ot E [B* + AB(t)] w cos wt. The (*) values in 

Eq. (4.7-2) are steady state amplitudes and phases at the desired 

solution point. A*=A(~yD,Ky~)~K~,~~andB*=B(w,D,K,~)~K, 7* Y 
are the desired steady state amplitudes of the assumed model and the 

sensitivity equation for K. @,* = $‘, (w, K, 7) ( K.+ + is the steady state 

phase shift through the assumed model. +2* = G, b% ‘11 K*, 7* is the 

steady state phase difference between the assumed model output and the 

output of the sensitivity equation for K. 

A block diagram of this system is given in Fig. 4.7.1. 

Using Eqs. (4.7-2) the outputs of the two gradient multipliers can 

be shown to be 
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e,(t) =D sin wt. 
- Compensatory System ’ 

T 
co(t) = A* sin (wt + 11/,*) 

.I 1 I > Closed Loop 
K 

z(t,K,~) = (A* + AA(t))sj&t + +,*+A'k,(t)) + 
Crossover 

7 e Model 
1 

e(t, K T)- 
Y 

K 
, 

Sensitivity uo(t, K, T) = (B* + AB(t)) sin(wt + $* + qc/,* +A*/,(t)) 
Equation 

-T- for K 

-K 
U,(t, K, T) = - (K* +AK(t)) :,(t, K, 7) 

- kTe(t,K,T) u,(t,K,T) 

Filter 7 
- Ge(t, K, 7) u,(t, K 7) 

Figure 4.7.1 Block Diagram for Sinusoidal Input Stability Analysis. 
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e(t,K, 7) u,(t,K,~) = B*$y) [cos q2* - cos(2ot + 2q1* + J/i*)] 

B*A*A$(t) (4.7-3) 

+ 2 [ sw2* + sin(2wt + 2q1* +*,*)I 

and 

e(t,K, 7) ul(t,K, 7) = - wK*B*AA(t) 
2 [ - SW2 * + sin(2wt + 24b 1* +AQ*)l 

(4.7-4) 
wK*B*A*A++t) 

2 [ cos q2* + cos (2cfd + 2q1* + G2*)]. 

Equations (4.7-3) and (4.7-4) are developed with the aid of the 

ident ities 

sin x sin y = ; cos (x - y) - ; cos (x + y) 

(4.7-5) 

sinxcosy=+ll(x+y)+ +l(x-y) , 

and the standard first order approximations 

sinA=A 

cos A = 1 (4.7-6) 

A=A=O. . 

The signals represented by Eqs. (4.7-3) and (4.7-4) are multiplied 

by the gradient gains kK and k7, respectively, and passed through the 

gradient filters to give the parameter adjustment rate equations 

AK@, K, T) and AT&, K, 7). (See Fig. 4.7. l.) The filter outputs are 
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AK(t, K, T) = - kK - Mf cos(bt + 2+1* + q,* + qf) 1 
(4.7-7) 

B*A+#) 
+ 2 * + Mf sin(2wt + 2@3* + +,* + 

and 

h(t,K, r) = 
krK*B*w 

2 
1 [ 

AA (t> -SilHp2 * + Mf sin(2wt + 2qb1* + zc/,* +ef) 
3 

5 

4.7-8) 
+ AA+&t) + Mf cos(ht + 2@1* + q2* + qf) , 

where qf = qf (w, T) is the phase shift and Mf = Mf (o,T) the magnitude 

attenuation introduced by the gradient filters. The filters are assumed 

to be equal for this discussion. 

It is now remembered that AA(t) and A@,(t) are modulating functions 

caused by the slowly varying changes in K(t) and T(t). In the neighbor- 

hood of the desired solution these modulating terms are approximately 

AA(t) = g AK(t) + g AT(t) (4.7-9) 
K*, r* K*, 7* 

and 

a% 
A*,(t) = x 

a% 
AK(t) +x AT(t) . (4.7- 10) 

K*, 7* K*, r* 

Placing Eqs. (4.7-9) and (4.7-10) back into (4.7-7) and (4.7-8), 

the desired forms for the method of Kryloff and Bogoliuboff are 

obtained [ 211. 

82 



kK B* 
&t, K, 7) = - 2 a*1 

=+Asin+ - 2 ilK 2 1 aK K* q-* 
AK(t) Y 

% 
3 

(4.7-11) 

+AsinqZx AT(t) 
K*, T* 

+ kK fl (AK(t), AT(~)) l (Sinusoid of 2ot) . 

and 

h(t, K, 7) = sin $2 aK 
a% =+Ac0sJ1~~ 

3 
AK(t) 

K*, r* 
\ 

(4.7-12) 

+ k7 f,(AK(t), AT(t)) * (Sinusoid of 2wt) . 

It should be emphasized that since their introduction AA(t) and 

Aql(t) have been taken as constant in all calculations. This is in line 

with the basic method as proposed by Kryloff and Bogoliuboff, and is 

continued for one more calculation. This additional calculation is the 

integration with respect to time of both sides of Eqs. (4.7-11) and 

(4.7-12) from t to t + b. This eliminates the sinusoidal terms on the 

right hand sides of both equations since the sinusoidsare integrated 

over exactly one cycle. 

The resulting equations are 
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and 

87(t = k7K*B*o 

1T 2 
w 

w 

sin +2 aK *+Acos+~& 
3 

AK(t) 
K*, 7* 

(4.7-14) 

+ 

In keeping with the method of Kryloff and Bogoliuboff, the terms 

on the left sides of Eqs. (4.7-13) and (4.7-14) are taken as the approxi- 

mate derivatives of AK(t) and AT(t) with respect to time. 

AK(t+$ -AK(t) 

71 = $ (AK(t)) z i\K(t) 
- 

and 

A++;)-AT(t) 

7-I = & (AT(t)) ?’ AT(t) . 

w 

(4.7-15) 

(4.7-16) 
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Placing these approximations back into Eqs. (4.7-13) and 

(4.7-14), the desired equations of motion are obtained. 

i\K(t) [ 1 = 
h(t) 

% B 

[ 

aA -- 
2 cos zc/, E 

k7KBw 

2 
aA 

[ - 
sin *2 aK 

a% 
-AC..,,,] 

kKB -- 
2 

[ 
cos q2 g 

k7KBw 

2 

AK(t) [ 1 AT(t) 
(4.7-17) 

K*, 7* 

Equation (4.7-17) describes the motion of the perturbed parameters 

AK(t) and AT(t) in the neighborhood of the desired solution AK(t) = AT(t) = 0. 

Several facts are apparent from an inspection of the coefficient matrix 

of Eq. (4.7-17). 

(1) The parameter adjustments are coupled in a rather compli- 

cated manner, with the amount of coupling depending upon six 

variables: D, CO, K*, r*, kK and k7. 
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* (2) If coupling is to be eliminated the off-diagonal terms must be 

zero. A sufficient condition for zero coupling can be developed 

by merely setting the off-diagonal terms equal to zero. These 

equations are 

kK B* 

2 

and 

r 

1 =o 
K*, +r* 

(4.7-18) 

kKK*B*o 

2 

Since kK, k7, K*, B*, and o are all non-zero in the non- 

trivial case, Eqs. (4.7-18) and (4.7-19) can be reduced to 

a% 
=-A~inq~~ (4.7-20) 

K*, r* K*,r* 

and 

a% 
A cos *2 aK 

aA 
* K* 

Y * 
7 = sin *2 aK K* 7* 

Y 
(4.7-21) 

By dividing Eq. (4.7-20) by (4.7-21), the transcendental 

functions can be eliminated. 
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A aK’ K*, 7* 
aK K*,r* 

or, 

aA aA 
-F-z . (4.7-23) 

K*, 7* K”, r* 

It can be seen that one cannot force this equality to occur 

without complete a priori knowledge of the system. Even 

then, the equality may not occur if o is the only free variable. 

Since the coefficients K* and r* are assumed unknown, the 

coupling cannot in general be eliminated using the present 

tracking configuration. 

(4.7-22) 

(3) Each term in the coefficient matrix of Eq. (4. V-17) is pro- 

portional to both (A*)2 and either kK or k r. Since A* is 

directly proportional to D, the input amplitude, it follows 

that the effect of changes in D can be offset by changes in k7 

andk K. This fact was also found to be true in the ramp and 

acceleration input cases. 
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(4) If AT(t) = Ar(t) E 0, the time constant of the convergence of 

AK(t) is the reciprocal of the upper left hand term in the 

coefficient matrix. Likewise, if AK(t) E AK(t) E 0, the time 

constant of AT(t) convergence is the reciprocal of the lower 

right hand term. 

(5) Due to the number of variables contained in the coefficient 

matrix of Eq. (4.7-17), no attempt was made to determine 

stability regions in terms of the parameters involved. 

However, if nominal values for K*, r *, w and D are assumed, 

Eq. (4.7-17) is found to be asymptotically stable. 

Examples of some of these characteristics are given in Appendix C. 

4.8 Applying the Method of Kryloff and Bogoliuboff to the Random Input 
Case 

In the practical application of parameter tracking systems the 

input signal is filtered Gaussian white noise, or a sum of sinusoids 

that produces an apparently random signal. The purpose of this section 

is the investigation of the general convergence properties of the para- 

meter tracking system associated with the random input case. This 

must be approached somewhat differently than the sinusoidal input 

case. 

The method will be developed using a two parameter model system. - 

The extension to higher order systems can be deduced from this example. 
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The notation for this method is given in Fig. 4.8.1. The input is 

assumed to be filtered Gaussian white noise, with the assumptions 

and conditions of Section 4.7 still in effect. The gradient filters have 

been eliminated for ease of presentation. 

In the neighborhood of the solution point, 

Z(t,K,r) = Z(t,K*,r*) +g (t,K,r) AK(t) 
K*, r* 

and 

+ $ (t,Kjr) AT(t) 
K*,r* ,’ 

auO uo(t, K, r) = uo(t, K*, r*) + aK (t, K, r) 

auO 
+ x (t, K, 7) AT(t) 

K*, r* 

aul 
u,(t, K, 7) = u,k K*, 7*) + x k KY 7) 

aul 
+x (W,r) 

But 

Y (4.8-l) 

AK(t) 
K*, r* 

(4.8-2) 

lK*, r* 

AT(t) . 
K*, r* 

g 6, K, 7) I K*,r* - 
= u,(t, K*, 7*) , 

AK(t) 

(4.89) 

(4.8-4) 
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ei(t) 
Real System 

Bo(t,K*, T*> = e,(t) 

t 

Sensitivity Equation 
for 7 

u,(t,K,~) 

Assumed Model 

Sensitivity Equation 

K t AK(t) 

,+ 

K* 

+, AT(t) 

,+ 

7* 

Figure 4.8.1 Block Diagram for Random Input Stability Analysis. 
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g (t,K, 7) = ul(t,K*, r*) , (4.8-5) 
K*, r* 

and 

Oo(t) = Z(t, K*, r*) . (4.8-6) 

Therefore, 

Z(t,K,r)= Oo(t) + uo(t,K*,r*)AK(t) + ul(t,K*,r*)Ar(t) (4.8-7) 

and 

e(t,K, r) = uo(t,K*, r*)AK(t) + ul(t.,K*, r*)AT(t) . (4.8-8) 

By using Eqs. (4.8-2), (4.8-3) and (4.8-8), and neglecting the 

A2 terms generated in the multipliers, the inputs to the gradient in- 

tegrators are found to be 

AK(t, K, 7) = - kK e(t, K, 7) uo(t, K, 7) 

= - kKuz(t, K*, r*)AK(t) - kKuo(t, K*, r*)ul(t, K*, r*)Ar(t) 

(4.8-9) 
AT&, K, 7) = - kr e(t, K, r) ul(t, K, 7) 

= - krul(t, K *, 7 *)uo(t, K*, T*)AK(t) - kruf(t, K*, r*)Ar(t) . 

If the input was a single sinuso.id, Eqs. (4.8-9) could be integrated 

with respect to time over one cycle of the sinusoid to generate the 
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,,averageYT differential equations for AK(t) and AT(t). This averaging 

would be done with AK(t) and Ar(t) held constant on the right hand 

sides of the equations. 

In Eq. (4.8-9) the u. and u1 terms are not sinusoids, but sample 

functions from random processes. They cannot be averaged over “one 

period,,, since an infinite number of frequencies are present. However, 

if most of the power in the ui(t, K*, T*) terms is located at frequencies 

such that AK(t) and Ar(t) are essentially constant over one cycle of 

the lowest frequency present, then a meaningful average value for 

AK(t) and Ar(t) can still be obtained, while keeping with the intent of 

the basic method of Kryloff and Bogoliuboff. It should be remembered 

that in Chapter 2 the maximum power in u,(t, K*, r*) and ul(t, K*, r*) 

was shown to be near crossover, with the power falling off toward 

zero on both sides of this region. 

With these facts in mind, the average or expected values for 

AK(t) and Ar(t) at any particular time can be determined by taking 

the statistical expectation of the right hand sides of Eq. (4.8-g), under 

the assumption that AK(t) and Ar(t) are constant. 

The “averaged” differential equations are then 

(4.8-10) 

where 
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R= 

- 

uo2(t, K*, r*) uo(t, K*, r*)ul(t, K*, 7*) 
I 

ul(t,K*, r*)uo(t,K*, r*) u12 (t,K*, r*) 
t 

L 

R is a moment matrix and is positive definite. Equation (4.8-10) is 

therefore stable and the system should “on the average,, converge. 

Equation (4.8-10) indicates the futility of trying to predict a priori 

the convergence rates for a given model. The coefficient matrix is a 

function of all the variables encountered in the sinusoidal case, plus 

being dependent upon the characteristics of the input filter. In 

addition, the short-term characteristics of convergence may differ 

drastically from that predicted by Eq. (4.8-lo), due to the statistical 

variation of the coefficients in matrix R. This variation is not present 

in the sinusoidal input case. 

Although they were developed from an entirely different point of 

view, the results of this and the last section are compatible with 

previous results obtained by Meissinger and Bekey [ 7,291. 

4.9 Theoretical Analysis of the Limited Gradient 

During actual subject testing a problem with the somewhat erratic 

action of the parameters K(t) and r(t) was encountered. These para- 

meters would converge to a fairly stable value, stay there for a period 
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of time, and then, on occasion, jump away from the convergent point 

in one sudden movement. An extremely bad case of this is shown in 

Fig. C. 4.1 in Appendix C. This result occurs in cases where the 

subject is operating in a fairly nonlinear manner. 

The fact. that the disturbed parameter would start converging back 

toward the original stable point indicated that the jump was due to a 

momentary lapse in effort on the part of the subject, rather than a 

planned increase or decrease in the parameter. This lapse shows up 

in the tracking network as a large increase in e(t, K, r), and thus in 

AK&, K, r) and i\r(t, K, r). In extreme cases, like the one cited above, 

the average value of the parameter over a short sample period can be 

greatly affected. This condition is not peculiar to the particular 

tracking system used, but is evident in the records of other researchers. 

One way to reduce the magnitude of these sudden changes in para- 

meter values is to reduce the gradient gain. This effectively increases 

the filtering action inherent in the tracking system and tends to smooth 

out all disturbances. The difficulty in this approach is that lowering 

the gradient gain also increases the convergence time. Todosiev and 

Bekey have tried to circumvent this problem in at least two different 

ways : 

(1) they instructed their subjects not to use sudden control stick 

movement; and 
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(2) they systematically dropped all gradient gains by a factor 

of 10, after a suitable convergence interval. 

In order to reduce the magnitude of the problem during the 

experimental work of this research, a new parameter adjustment 

technique was used. The adjustment equation has already been 

introduced in Chapter 3 as Eq. (3.5-2). 

Equation (3. 5-2) shows that &K(t) is nothing more than the limited 

and filtered value of the conventional gradient integrator input - FK euo. 

The practical reasoning behind this type of system is quite simple. In 

the conventional adjustment scheme the crossover gain K would be 

adjusted according to the equation 

AK&, K, 7) = - kK g (t,K, r) = - kK e uo(t, K, 7) 

= - kK[Z(t,K,r) - eo(t>] u,ct, K 7) 

= - s[ Z(t,K, 7) - S(t) - n(t)] uo(t, K, r) . (4. 9-l) 

Large increases in n(t), the remnant signal out of the human system, 

are immediately felt in hK(t, K, r). These disturbances in n(t) will 

show up as disturbances in K(t), providing u. # 0. 

By introducing the sat function, the maximum rate of change of 

K(t) is directly limited. This means that K(t) will depend mainly on 
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the average value of - % e uo, and will be fairly insensitive to large 

short duration disturbances. The linear filter was added for addi- 

tional smoothing, but is not essential for good operation. 

To determine the net effect of the limiter on the average value 

of the gradient, the limiter output will be analyzed in two ways: 

(1) At the true optimum K = K* and r = r*, to see if the 

expected value of the limiter output is zero. 

(2) In the vicinity of K *, T* when the input is sinusoidal and 

n(t) is present, to see if the parameters will still converge. 

With noise present in the system 

e(t, K, r) = Z(t, K, r) - e,(t) 

= Z(t,K, r) - S(t) - n(t) . 

(4.9-2) 

(4.9-3) 

At the desired convergence point 

and 

Z(t,K*, r*) = S(t) (4.9-4) 

e(t,K*, T*) = - n(t) . (4.9-5) 

Under these conditions the gradient for the parameter K is 

g (t,K *, r*) = e u,(t, K*, r*) 

= - n(t) uo(t,K*, r*) , (4.9-6) 
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and the limiter output is 

K T$ (t, K*, r*) = sat kK n(t) uo(t,K*, T*) 1 [ .I . (4.9-7) 

The expected value of the limited gradient is 

uo(t,K*, r 

+k 
L/ kK 

K J ’ ‘nu 
-L/ K 

0 
(a)da + L/I?r bKnuo 2 q/.(4.9-8) 

It is desired that the expectation in Eq. (4.9-8) be zero so that the 

true convergence point will not be biased due to the nonlinear action of 

the filter. A sufficient condition for Eq. (4.9-8) to be zero is that 

P nu (CT), the probability density function of n(cy ) uo(a ,K*, r*), be 
0 

symmetric. In addition, sufficient conditions for the random variable 

n(a) uo(~,K*, 7*) to have a symmetric probability density function are: 

(1) n(o) and u ((u, K*, r*) are independent, or Gaussian and 
0 

uncorrelated. 

(2) At least one of the two random variables n(a) or uo(cr , K*,r *) 

must have a symmetric probability density function. 

These conditions are proven in Appendix B. 

If O,(t) is chosen to be filtered Gaussian white noise with zero 

mean, then: 
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(1) uo(a , K*,T*) is Gaussian with zero mean, and thus symmetric. 

This follows directly from the fact that e,(t) is Gaussian with 

zero mean. 

(2) n(o) and uo(a, K*,T *) are not correlated. This follows from 

the fact that n(a) is not correlated with ei(@), while 

uo(a, K*,T*) is linearly related to Oi(cu). 

(3) n(a) may be Gaussjan, but it is doubtful that it is completely 

independent of u. (CI , K*, 7*). 

If n(a) is either Gaussian or independent of uo(o, K*, T*), then 

the conditions on n(cu) and U~(CL, K*,T*) are sufficient to make Eq. (4.9-8) 

equal to zero. This will insure that the limiter will not bias the point 

of convergence in actual compensatory testing. If n(o) does not meet 

either one of these conditions, then the possibility exists that the final 

values of K and 7 could be biased. 

The limited gradient was actually used on all parameter tracking 

runs in the K2/p2 experiment described in Chapter 5. Limiting in 

some cases was quite severe. In spite of this, it will be shown in 

Chapter 6 that the limiting did not apparently bias the final parameter 

values. This tends to support the assumption that n(cw) uo(“, K*,r *) is 

a symmetric random variable, or at least close enough so as not to 

bias the results. This assumption will be made throughout the rest 

of the discussion. 
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To check the qualitative effect of the new parameter adjustment 

method on the average speed of convergence, a sinusoidal input to- 

gether with the method of Section 4.7 will be used. tie parameter 

convergence will be investigated with the other parameter held constant 

at the desired value. 

Assume first of all that n(t) = 0 and e,(t) = D sin ot. If kK is 

small, as it must be in actual operation, then the equations developed 

in Section 4.7 hold when K(t) 2 K* and r = 7*. From Eq. (4.7-11) 

with A7 = 0, 

7 

% 
B* 

&K(t,K, T*) = - aA 

L - 
cos zc/, aK 

a+l 2 + A sin +2 aK 
-1 

AK(t) K* 
Y * 
7 

(4.9-9) 
+ kKf (AK) * (Sinusoid of &t) . 

In the unlimited case discussed in Section 4.7, the sinusoidal 

term is filtered out and the average convergence rate is determined 

solely by the term 

kK B* 

2 AK(t) . (4. 9-10) 
K*, r* 

As described earlier, this term is assumed constant over time inter- 

vals z in length. 

If the limits L are lowered to the point where the waveform of 

Eq. (4.9-9) is clipped, then the situation shown in Fig. 4.9.1 is encountered. 
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- kKe(t, K, 7*) u,(t, K, T*) 

t=o AK(t) K, 7*) 

\ kK B* 

- [ 

a+ 
2 cos *2 aK aA+Asinq2& 

I 
AK(t) 

K*, 7* 

Figure 4.9.1 Parameter Adjustment Limiting-Sinusoidal Input 

It is seen by inspection that the average value of the limiter output 

will be lower than the average value of the limiter input. Since this 

average value represents the new value of iK(t,K, 7*), it can be con- 

cluded that the limiter will reduce the average rate of convergence 

once limiting occurs. The convergence is still in the same direction, 

however. 

By injecting an uncorrelated Gaussian signal n(t) into the com- 

pensatory system output, Eq. (4.9-9) is changed to 
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kK B* 
6K(t,K,7*) = - 2 aA 

[ - 
cos +2 aK 

a*l 
+Asinq2 aK -1 AK(t) K* 7 9 * 

(4.9-11) 
+ kgf (AK) l (S inusoid of 2wt) + kKn(t)uo(t, K, 7 3 . 

At any instant of time tl, the product of the remnant n(tl) and the 

quasi-steady state sinusoid uo(tl, K, T *) will be a symmetric random 

variable if e,(t) is Gaussian with zero mean. The sum 

kKf(AK) l (Sinusoid of I&t) + kK n(t) uo(t, K, T*) (4.9-12) 

will also be symmetric. 

When this sum is super-imposed on the biasing term given by 

Eq. (4. g-10), and passed through the limiter, the limiting will on the 

average by most severe on the side determined by the sign of Eq. 

(4.9-10). Due to the symmetry involved the average value of the 

output of the limiter will again be lower than the average value of the 

input to the limiter. AK@, K, r 9 will again be reduced on the average 

when limiting occurs. 

If the limits L are made too small, or if n(t) is very large, the 

condition can be reached where extreme limiting occurs on both sides 

of the limiter. The average output in this case approaches zero and 

the parameter will not converge at all. An example of this will be 

constructed in Appendix C. 

101 



4.10 Experimental Convergence Tests 

A series of experimental tests were run to check the parameter 

tracking system while tracking a real system of the correct form, 

(’ 1. e. , a real system as given in Fig. 3.7.1). Since Margolis [ 231 

had verified the action of continuous parameter tracking systems as 

predicted by root locus plots when the input was a step, ramp, or 

acceleration, the experimental analysis was designed to evaluate three 

things : 

(1) The general convergence properties of the parameter tracking 

system when the input was bandwidth limited white noise. 

The purpose here was to show that K(t) - K* and T(t) - r* 

from various values of K(0) and 7(O). 

(2) The convergence properties when the input was sinusoidal 

and no gradient limiting was occurring. This was to check the 

sinusoidal results predicted by Eq. (4.4-17). 

(3) The convergence properties when the input was sinusoidal 

and gradient limiting was occurring. This was to evaluate 

the action of the limiter. 

In addition, the effectiveness of the limiter in reducing parameter 

disturbances is shown graphically by comparing some actual compensa- 

tory test runs with and without the limiters in use. 
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A detailed description of the tests and some sample time histories 

are given in Appendix C. It is sufficient to state at this point that all 

theoretical points were verified, and that the parameter tracking 

system performed as predicted. 
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Chapter 5 

COMPENSATORY TESTS AND TEST RESULTS 

In order to check the crossover model parameter tracking 

system in actual operation, two separate compensatory tracking 

tests were run. A complete outline of the test conditions and in- 

structions to the subjects are given in Appendix A. A summary of 

the actual tests conducted is given below. 

5.1 Description of the Compensatory Tracking Tests 

In the first compensatory tracking test three subjects were 

trained for ten days on a system containing a Kl/ p controlled 

element. The input was Gaussian pseudo-white noise filtered with a 

simple 3rd order filter of the form 

1 - 

(Tp + 1)3 ’ 

Filter cut-off frequencies of 1, 2 and 4 radians per second were used. 

The control stick used required horizontal movement of the entire 

forearm and had light spring loading and essentially no damping. 

Stick inertia was small in comparison with the inertia of the arm. 

The subject was comfortably seated in a straight backed chair 

with his right arm resting on the control stick, and the oscilloscope 

located approximately 28 inches directly in front of him. The 
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oscilloscope had a 5 inch green tinted face that was coated with P-31, 

a very low persistence phosphor. A vertical cursor was located in 

the center of the oscilloscope with the error displayed as a dot moving 

horizontally. 

All of the subjects were right handed males with no known 

physical abnormalities that would affect their tracking capability. 

None of them had previous tracking experience of any kind. Subject 

testing was conducted in a quiet test booth. A picture taken inside of 

the test booth is given in Fig. 5.1.1. 

On each day, each subject completed 5 two minute trials at each of 

the cut-off frequencies for a total of 15 two minute trials per day. The 

blocks of 5 trials at each frequency were randomly ordered each day 

in order to minimize the effects of training transfer from one test 

condition to the other. 

In the second compensatory test three different subjects were 

trained in the same manner as above, with the exception that Y,(p) 

was K2/ p2. In addition, after 10 days of training the arm control 

stick was replaced by a force stick, and three additional days of 

training were given on this stick. Although the force stick data was 

not completely analyzed, its quantitative effects on K, 7 and the 

parameter tracking system in general were of interest. 

During each trial completed by each subject the input signal 0,(t), 
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Figure 5.1.1 The Subject Test Booth. 
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the compensatory output signal co(t), and the control stick output 

signal c(t) were all recorded on magnetic tape. ei(t) and co(t) were 

then played back into the parameter tracking system and K and 7 

determined. c(t) was not used in the parameter tracking system. The 

bandwidth of the tape recorder was 175 cycles per second. 

In addition to the signals recorded the conventional index of per- 

formance given in Eq. (1.2-2) was calculated for each trial. The 

equation is repeated here for convenience. 

120 set 

Compensatory Tracking Index = 1 c(t)) dt = IAE. (5. l-l) 

This index was averaged over the 5 trials at each frequency, normalized 

by the average value of 

ljZ0 set 

0 

J (5.1-2) 

and plotted as the normalized integral of the absolute error. These 

graphs are presented in Figs. 5.1.2 and 5.1.3. The only data plotted 

on these graphs are those which were analyzed in one manner or an- 

other later in the research. Data for days not included appeared quite 

consistent with that given. 
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5.2 Analysis of Variance on Normalized IAE Data 

An inspection of the normalized IAE curves shows that there are 

apparent differences between subjects and between tasks, plus a 

tendency to reduce the error score with training. To check the 

statistical significance of the apparent changes in the normalized IAE 

due to training and cut-off frequency, an analysis of variance was run 

on the error score data from each experiment [ 401. 

The sources of variation were cut-off frequency and days of 

training. In both analyses the cut-off frequencies were 1, 2 and 

4 radians per second. For the first experiment, Yc (p) = KI/ p, the 

days considered were 2, 4, 6, 8, and 10. For the second experiment, 

Y,(p) = K2/p2, the days considered were 3, 5, 7 and 9. These 

conditions all used the position control stick. 

The results of these two analyses are given in Table 5.2.1. It 

is seen that in both cases there are significant effects on the normalized 

IAE due to both training and cut-off frequency. The interaction be- 

tween these two sources of variation is greater in the Kl/ p case than 

in the K2/p2 case. This last point is best understood by looking at 

the average IAE values given in Figs. 5.1.2 and 5.1.3. In the Kl/ p 

case the curves have more of a tendency to converge with training, 

than they do in the K2/p2 case. 
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TABLE 5.2.1 

ANALYSIS OF VARIANCE OF NORMALIZED IAE 

Y&P) = El/p 

Source of Sum of Squares Degrees of Mean Square F 
Variation Freedom Ratio 

Cut-off 
Frequency-A 28,622 2 14,311 1076*** 

Day of 
Training-B 2,294 4 574 45.15*** 

AxB 2,693 8 337 25.33*** 

Within Cell 399 30 13.3 

Y,(P) = K,/p2 

Source of Sum of Squares Degrees of Mean Square F 
Variation Freedom Ratio 

cut -off 
Frequency-A 105,684 2 52,842 840*** 

Day of 
Training-B 4,537 3 1,512 24*** 

AxB 

Within Cell 1,509 24 62.9 

*** 
Significant at 0.01 Level 

2.62** 

** 
Significant at 0.05 Level 
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5.3 Parameter Tracking Method and Results 

To determine the average values of K and T for each subject at 

each test condition, the recorded values of ei(t) and co(t) were played 

into the parameter tracking system. The gradient gains kK and k7 

were adjusted empirically so that K(t) and 7(t) converged exponentially 

with time constants of about 15-20 seconds. This meant that after the 

first sixty seconds of each two minute run the parameters K(t) and T(t) 

had fairly well lined out at their final values. At this point in each run 

an averaging ‘network was automatically activated and the values of K 

and r for each run were calculated as 

120 
1 K=a 

I 
K(t) dt 

60 

and 

(5.3-l) 

(5.3-2) 

By averaging the results of Eqs. (5.3-l) and (5.3-2) over the 

five runs at each frequency, the values of K and r for that frequency, 

for that subject, for that day were determined. The results of these 

tests are given in Figs. 5.3.1 to 5.3.6. Typical time histories of K(t) 

and T(t) for different test conditions are given in Appendix D. 
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The subjects tested all exhibit the same general characteristics. 

(1) K increases with training. 

(2) 7 decreases with training. 

(3) K decreases with oi. 

(4) r decreases with oi when Y,(p) = Kl/p, but increases with 

oi when Yc (p) = K2/ p2. 

(5) The differences in the characteristics of the position control 

stick and the force stick used on days 11-13 ,on the 

Y,(p) = K2/p2 experiment appear to have a marked effect 

on K and T. K is seen to increase and r to decrease when 

the force stick is used. (See Fig. 5.3.6) 

All these points are evident by inspecting the individual subject 

data, and also from the data averaged over three subjects. It should 

be noted that although all subjects had the same general characteristics, 

the specific values for K and r at any point in training varied widely 

between subjects. Also, the rate of change of K and r with training 

was greater in some subjects than in others. 

By comparing Figs. 5.3.1to5.3.6withFigs. 5.1.2and5.1.3, it 

is found that high gain and low time-delay are associated with low 

normalized IAE, as might be expected. From a control point of view 

this merely says that better control exists when K is high and r is low. 
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To determine the statistical significance of the apparent changes 

in K and 7 with cut-off frequency and training, two analyses of 

variance were run on the data from each experiment. The sources 

of variation were taken as cut-off frequency and training. The cut- 

off frequencies were 1, 2 and 4 radians per second. In the K1/p 

experiment the days taken were 2, 4, 6, 8 and 10. In the K2/p2 

experiment the days taken were 3, 5, ‘7 and 9. The results of these 

analyses are given in Tables 5.3.1 and 5.3.2. 

The changes in K and r due to changes in oi are significant at the 

0.01 level in all four cases. The effect of training on K is significant 

at the 0.05’level in experiment one and at the 0.01 level in experiment 

two. The effect of training on T is significant at only the 0.1 level in 

the first experiment, but to the 0.05 level in the second experiment. 

The fact that the changes in K and r are significant at the levels 

given is a valuable piece of information. This tends to confirm the 

hypothesis that the crossover model parameters can be used as 

indices for measuring task difficulty and subject learning rates. 

5.4 Comparison of Parameter Tracking Data with McRuer’s Data 

As was mentioned in Chapter 1, McRuer collected extensive data 

in the process of arriving at the crossover model. Since McRuer’s 

data [ 251 is for trained subjects, the only direct comparison that can 

be made with his data is with the present subjects after training. 
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TABLE 5.3.1 

K1 ANALYSIS OF VARIANCE: Y,(p) = x) 

CROSSOVER GAIN, K 

Source of Sum of Squares Degrees of Mean Square F 
Variation Freedom Ratio 

cut -off 
Frequency -A 18.21 2 9.11 5.91*** 

Day of 
Training-B 21.13 4 5.28 3.43** 

AxB 3.61 8 0.45 < 1 

Within Cell 46.22 30 1. 54 

CROSSOVER TIME-DELAY, r 

Source of 
Variation 

Sum of Squares Degrees of Mean Square F 
Freedom Ratio 

cut -off 
Frequency-A 0.034 2 0.017 24.286*** 

Day of 
Training-B 0.007 4 0.00175 2.50* 

AxB 0 8 0 <l 

Within Cell 0.021 30 0.0007 

*** 
Significant at 0.01 Level 

** 
Significant at 0.05, Level 

* 
Significant at 0.10 Level 



TABLE 5.3.2 

K2 
ANALYSIS OF VARIANCE: Y,(p) = 2 

P 

CROSSOVER GAIN, K 

Source of Sum of Squares 
Variation 

cut -Off 
Frequency-A 17.55 

Day of 
Training-B 1.39 

AxB 0.57 

Within Cell 2.54 

CROSSOVER TIME-DELAY, T 

Source of Sum of Squares 
Variation 

cut -off 
Frequency -A 

Day of 
Training-B 

AxB 

Within Cell 

0.028 

0.008 

0.003 

0.020 

Degrees of Mean Square F 
Freedom Ratio 

2 8.78 7 9.82*** 

3 0.46 

6 0.09 

24 0. 11 

Degrees of Mean Square F 
Freedom Ratio 

2 0.014 

3 0.0027 

6 0.0005 

24 ,O. 00083 

*** 
Significant at 0.01 Level 

** 
Significant at 0.05 Level 

4.81*** 

<l 

16.8*** 

3.2** 

<l 
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In the Kl/p experiment the values of K and 7 averaged over the three 

subjects for day 10 were used. In the K2/p2 experiment the values of 

K and r averaged over the three subjects on day 9 were used. These 

were all position control stick runs. 

Table 5.4.1 gives the comparison of these two sets of data with 

McRuer ‘s data. It should be noted that two of McRuer ‘s cut-off 

frequencies differ by l/2 radian per second from those used in the 

present research. In addition, the control sticks and system gains 

differed in the two sets of data. Also, McRuer used a sum of sinusoids 

rather than filtered white noise as an input. However, it is still 

interesting to compare the results. 

Considering the small number of subjects, plus the differences in 

test conditions, no firm statements can be made from a comparison 

of the two sets of data. There are, however, two apparent differences. 

(1) K was found to decrease with an increase in oi in the present 

research. McRuer did not in general find this result, al- 

though it was previously noted by Elkind [ 131. 

(2) 7 was found to increase with oi in the K2/p2 experiment in 

the present research, while McRuer found it to decrease. 

Whether these discrepancies are due to individual subject 

differences or to differences in test conditions, is open to conjecture. 
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TABLE 5.4.1 

. . 
r 
‘C(P) 1 wi = 1.5 rad/sec 

I 
oi = 2.5 rad/sec ( oi = 4 rad/sec 

AVERAGE CROSSOVER GAIN AND TIME-DELAY 
VALUES FOR TRAINED SUBJECTS 

McRUER’S DATA 

K 7 K 7 K 

K1 
P- 4.6 0.24 4.7 0.18 5.0 

K2 
2 3.2 0.385 3.3 O.-335 1.8 

DATA FROM PRESENT RESEARCH 

I 

-2-I 
0.12 

? 
0.260 

Y,(p) oi = 1 rad/ set 0 i = 2 rad/sec oi = 4 rad/sec 

K 7 K 7 K 7 

K1 
-F 5.88 0.224 5.5 0.208 4.78 0.155 

K2 
7 4.7 0.318 3.37 0.356 2.14 0.416 
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It is believed, however, that the parameter tracking system used in 

this research gives valid results. These results will be cross- 

checked in Chapter 6 and shown to be confirmed by spectral analysis. 

The data from the present experiments tend to confirm Elkind’s 

position that K does decrease with an increase in oi. The change of 

r with oi appears to depend on Y,(p) and cannot be simply defined 

from the two cases studied here. 

5. 5 Calculation of Power Match 

Todosiev has defined an index called Power Match (PM)[ 341 , 

which he uses to evaluate the assumed model under test. Using the 

notation of this research, the Power Match for a given run is 

120 

J e2(t) dt 

PM=l- 
60 

120 . 

Oo2(t) dt 

(5. 5-l) 

60 

A PM = 1.0 means that the assumed model output perfectly 

matches the compensatory system output. Numbers differ from 1.0 

by the power in the model mismatch as a fraction of the output power 

of the compensatory system. 

During the parameter tracking tests, PM was calculated for each 
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run and the PM values were then averaged over the five runs at each 

test condition. This gave the average PM value for a particular 

subject, on a given day, at a given test condition. These values are 

plotted in Figs. 5.5.1 and 5.5.2. 

In most cases the PM values were found to increase with training. 

This apparently indicates that the model accounts for more output 

power later in training than it does early in training. It will be shown 

in Chapter 6 that the subjects act in a more nearly linear manner later 

in training, and therefore PM values should increase with training. 

Due to differences in tasks between this research and that conducted 

by Todosiev, a comparison of PM values would not be very meaningful. 

It is sufficient to note that the PM values are in the same range, namely 

0.6 < PM < 1.0. - 
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Chapter 6 

VERIFICATION OF THE PARAMETER TRACKING RESULTS 

The experimental results of Chapter 5 were shown to compare 

favorably with the average crossover model data determined by 

McRuer with the notable exceptions that: (1) r increased with wi 

when Y,(p) = K2/p2, rather than decreased as McRuer stated, and 

(2) K was found to decrease with increases in oi, rather than hold 

constant. 

Due to the great variation existing between subjects, a more ac- 

curate cross check on the parameter tracking data was desired. This 

was especially true early in training, since nearly all published data 

was for trained subjects, with very little information available on 

the effects of practice on model coefficients [ 28,341 . Also, the 

validity of the crossover model early in training was suspect due. to 

the increases in power match values found in Chapter 5. 

To clarify these points, and to verify the parameter values 

determined by the parameter tracking system, selected data were 

analyzed using spectral analysis. The verification tests were made 

on specific subjects, on specific days, and on given test conditions to 

allow direct comparison with the parameter tracking results. 
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6.1 Determining Yp_Yc(jo) With Spectral Data 

In order to properly define the experimental analysis used to 

determine Yp Y,(jw) with spectral data, the following assumptions 

and notation are defined : 

(1) The compensatory system signals e,(t), 0,(t) and e(t) are 

assumed to be sample functions of random processes. 

(2) For a given subject, on a given day, with a given input 

frequency and a given controlled element, the random 

processes from which the sample functions are taken are 

assumed to be stationary and ergodic [ 10,281. 

Under these conditions the auto- and cross-correlation and spectral 

and cross-spectral density functions related to the processes can be 

defined in a standard manner. The time auto-correlation of e,(t) is 

T 

Rook) = trne co $ e,(t) eo(t + cu) dt (6. i-a) 
-T 

and the spectral density of co(t) is 

@ooow) = ROO@) e-jwcr da . 

-a3 

(6. l-2) 

Similar equations would give Rii(“) and Gi$w) for e,(t). 

The cross-correlation function between 0,(t) and co(t) is 
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Rio(“) = ~~- co ~ ei(t) eo(t + CL) dt 

-T 

(6.1-3) 

and the associated cross-spectral density is 

co 

@io(ju) = 
I 

Rio@) e’jwcu dcu . (6.1-4) 
-co 

Similar equations would give Ri&) and +i~@). 

Using the compensatory system model shown in Fig. 6.1.1, the 

random input describing function Yp Y,(jw) is by definition [ 271 

(6. l-5) 

However, since n(t) and S(t) are uncorrelated, 

~iECjW) = ~ii(jw) - ~ioow) ) 

and 

@jotiW) 
yP yc(jw) = Ldjw) - Giocj”) . 

(6.. l-6) 

(6.1-7) 

This is the computational form that was used. 

In the ideal case where all of the spectral densities are known 
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exactly, Eq. (6.1-7) can be solved directly to determine Y p y&w. 

In practice the desired densities must be estimated using finite length 

sample functions from the random processes involved. The estima- 

tion procedures used in this report are explained below. 

During each two minute compensatory trackirg run e&t) and co(t) 

were recorded for every subject. The two signals were recorded 

simultaneously on magnetic tape in analog form. The five pairs of 

samples taken each day at each test condition were identified as 

e,(t) and Qw(t), q=l,. . . ,5 . 

From each pair of these sample functions the approximate auto- 

correlation and spectral density functions were defined as [ 91 

Tn-Q 

C o,((y) = ,“‘“‘, 
n I 

e,e, eos(t + 4 dt 9 (6. l-9) 

0 

and 

Tm 
$ooqjw) = 2 

1 
Cow(a) e-jwcu dcr 

0 

(6.1-10) 

2 min > Tn > T >a>0 - m- - 

where W(a) is a smoothing function described in Appendix E. Similar 

equations were used to find C iiq(~) and @iiq(jw). Also, the approximate 
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cross-correlation and cross-spectral density functions are defined as 

T - 1~1 n 

‘ioq(‘) = 2(Twialoi ) 
n -Tn+ 1~1 

/ 
Q,(t) Bo4(t i- cr) dt (6.1-11) 

and 

lrn 

@i,(jw) = 
f 

Cidq(a) e-jwcr dcr . (6. 1-12) 

2min>Tn>T > ICI’1 > 0 - m- - 

The average values of the approximate density functions over the 

five samples were used as the estimators of the true densities for 

that condition. 

5 &Uw) = ; c ~iiqci”) 

q=l 

q=l 

q=l 

(6. l-13) 

These values were in turn used to estimate Eq.. (6.1-7). 
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ypycUw)= I\ 
$ioliw) 

k(jw) - &oQw) - 
(6.1-14) 

It should be noted that all of the spectral calculations were done 

numerically with integrations replaced by the appropriate summations. 

The programmed equations are given in Appendix E. 

Due to the amount of computer time needed for complete spectral 

analysis, only a limited amount of the compensatory tracking data was 

analyzed spectrally. From the Kl/p experiment, data from Subject 1 

on days 1, 2, 6 and 10 were analyzed. From the K2/p2 experiment, 

data from Subject 3 on days 3, 5, 9 and 13 were analyzed. These 

subjects were chosen simply because their parameter tracking data 

were considered ?ypical”. 

For each day /Yp Yc(jw) / and arg Yp YC(jw) were calculated for 

each input frequency. These values were then plotted in the standard 

manner as gain-phase plots on semi-log paper. On the same graphs 

the forward loop gain and phase curves of the assumed crossover 

model were plotted with K and 7 set at the average values determined 

by the parameter tracking system. This provides a direct visual 

comparison of the same data analyzed by the two entirely different 

methods. 

As mentioned previously, all spectral calculations were made 
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numerically . It was discovered that when wi was one radian per 

second the spectral densities in the crossover region could not be 

calculated accurately. The compensatory system input power was so 

low in this region that the computer program could not accurately per- 

form the desired calculations. The input power in these cases was 

down well over 30db. For this reason only the 2 and 4 radians per 

second data are presented. These results are given in Figs. 6.1.2 

through 6.1.17. 

In all but two instances the match between the spectral and para- 

meter tracking data is exceptionally good in the region of crossover. 

In most cases a better fit to the spectral data could not have been 

obtained if a manual curve fitting of the data had been made. These 

results lend confidence to the validity of the parameter tracking 

system and the form of the crossover model being used. 

There are only two cases where there is a questionable dis- 

crepancy between the two methods. These are in the phase curves of 

Figs. 6.1.4 and 6.1. 5. 

The discrepancies in the phase curves of these two cases can be 

attributed to the fact that the input power in the region of crossover is 

too low to allow accurate parameter tracking. In Fig. 6.1.4 1 &Qw)) 

is down 24db at crossover, while in Fig. 6.1.5 it is down 28 db at 

crossover. These are the only two cases where the input power at 
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crossover is this low, and is undoubtedly the reason for poor para- 

meter tracking values. 

The parameter adjustment driving force, as given by Eq. (4. g-l), 

is - keu. As the input power at a given frequency is decreased, the 

power present in - keu at that frequency is decreased at an even faster 

rate, and at some point it will become too small to be effective. This 

point appears to be when ) e,(jw)l at crossover is down 20 to 25db. 

Evidently some care must be exercised in choosing an input filter 

when parameter tracking is used. The results of these experiments 

indicate that if a third order filter is used the cut-off frequency should 

not be lower than 3 radians per second. If a second order filter is 

used then the cut-off frequency could be dropped back to 2 radians per 

second. These frequencies may be reduced somewhat when the con- 

trolled element is difficult to control, since the subject tends to reduce 

the system bandwidth as the task gets more difficult. 

As long as the input filter is chosen so that 1 e$w) 1 is down less 

than 20db at crossover, the parameter tracking system should be 

sufficiently accurate. 

6.2 The Relative Remnant i 

In Fig. 6.1.1 the output signal from the closed loop compensatory 

system is expressed as the sum of two signals 

co(t) = S(t) + n(t) . (6: 2-l) 
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S(t) is that portion of the output signal that is correlated with the input 

signal. Equivalently, S(t) is that portion of the compensatory system 

output which can be reproduced by passing the input signal through a 

linear time-invariant system. The system needed to generate S(t) 

from O,(t) is described by the transfer operator 

$w= 

yp y,(P) 

i l+ypy$) ’ 

(6.2-2) 

where YP YC(jw) is defined by Eq. (6.1-5). n(t), on the other hand, is 

that portion of the compensatory system output that cannot be related 

to O,(t) by a linear time-invariant element. It represents the uncor- 

related portion of the output signal, and is caused by the nonlinear and 

time-varying operation of the subject. 

Using frequency domain descriptions of S(t) and n(t), the ratio of 

correlated power to total power out of the human system can be defined 

as 

(6.2-3) 

p. is called the relative remnant by McRuer [ 251 . If the signals S(t) 
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and n(t) are assumed to have negligible power present above frequency 

ud, Eq. (6.2-3) can be rewritten as 

Wd ! Od 
@m(iq dy 

po2= 1 -O 
I 

@ssOwl) dy 
0 = 

Od Wd 
. (6.2-4) 

1 
~oociq dW2 

1 
@oo(iw2) dw2 

0 0 

Using the notation established in Eq. (6.1-13), the straightforward 

method of estimating po2 would be 

(6.2-5) 

Because n(t) is not directly measurable, Eq. (6.2-4) must be re- 

arranged. 

Since the standard linear correlation is defined as [ 271 

asstiw) 1 aiotiw) 1 2 
(Poo~w) = iq@) @oo(jw) ’ (6.2-6) 

it follows that 
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PO2 
as defined in Eq. (6.2-4) is seen to be equivalent to 

PO2 = . 

(6.2-7) 

(6.2-8) 

J +oot.i~2) do2 
0 

Equation (6.2-8) can be estimated directly using Eqs. (6.1-13). The 

A2 basic equation used for the calculation of p. was 

A2 
PO = (6.2-9) 

which was solved numerically. 

A2 Figure 6.2.1 contains plots of p. versus day of training for one 

subject from each experiment. These subjects are the same ones that 

were analyzed in Section 6.1. 

These graphs show that-both subjects became more linear and time- 

invariant with training, and less linear and time-invariant with an in- 

crease in 0 i. This is exactly what one would expect. 
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A2 The p. values for the subject from the Kl/p experiment are 

considerably higher than those for the subject from the K2/p2 ex- 

periment. This is because subjects are generally more consistent 

A2 on easier tasks, and should therefore have higher p. values on lower 

order systems [ 411. Since the comparison of these two sets of curves 

represents a comparison of only two subjects, no definite statements 

can be made other than the results appear to be consistent with pre- 

vious data [ 251. 

A2 The major importance of measuring p. is given in the next 

section. 

6.3 Comparing the Crossover Model with the Best Linear Time- 
Invariant Model 

Let it be assumed that K(t) and T(t) are constant at their optimum 

values, i. e., they are set at the values determined by the parameter 

tracking network. 

From the basic definition of the time auto-correlation function 

T 

Ree(0) = trnB o3 & 
J 

e2(t) dt 6% (6.3-l) 

-T 
- 

where e2(t) is the average energy in the error that exists between the 

outputs of the compensatory system and the assumed model. Likewise, 
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T 

Roe(O) = ;“-c co & 
1 

eo2(t) dt = 3 (6.3-2) 

-T 
- 

where 8 o2(t) is the average energy in the output of the compensatory 

system. 

Since 

e(t) = Z(t) - co(t) 

= [ Z(t) - S(t)] - n(t) (6.3-3) 

and 

e2(t) = [ Z(t) - S(t)] 2 - 2n(t)[ Z(t) - S(t)] (6.3-4) 

it follows that 

- 

+ n2(t) . (6.3-5) 

This is because n(t) and S(t) are not correlated by definition. Since 

Z(t) and S(t) are both fully correlated with Q,(t), they are fully cor- 

related with each other. This means that Z (t) and n(t) must be 

uncorrelated and 

2n(t) [Z(t) - S(t)] = 0 . (6.3-6) 

Using this equation, Eq. (6.3-5) follows directly from Eq. (6.3-4). 

159 



Using Eqs. (6.3-l) and (6.3-2) an Ideal Power Match (PMI) can 

be defined as 

(6.3-7) 

= (6.34) 

By subtracting Eq. (6.3-8) from (6.2-3) it is seen that 

+,,W) do 

PO2 
-PMI=l- 

d _ . 3-g) 
a3 

J +oocid do 
0 

or 

This follows from the fact that 

co 

- I 
so2(t) = ; (po,ci4 do 

0 

(6.3-10) 

(6.3-11) 

and 
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(6.3-12) 

since the average energies as computed in the time and frequency 

domains for the same signal must be the same. 

Several important facts should be noted at this point. From 

Eq. (6.3-8) it can be seen that the maximum power match is obtained 

when Z(t) = S(t), or when the assumed model perfectly represents the 

linear portion of the compensatory system. It should also be noted 

that the maximum possible PM1 will not be 1.0. The maximum PMI 

is only po2, which could be well below 1.0 if the compensatory system 

is very nonlinear or time variable. This implies that a low power 

match does not in itself indicate a poor linear model. In fact it indicates 

nothing at all, unless it can be compared with po2. This fact has not 

been emphasized by any researcher doing parameter tracking studies. 

As was discussed in Section 6.2, since only finite length samples 

of the various sample functions are available, po2 can only be estimated. 

The same holds true for PMI. For the experimental work of this report 

PMI was estimated by 

(6. 3-13) 
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where 

z=s 2 & /120sec e2q(t) dt (6.3-14) 

q=l 60 set 

and 

- & $ f20secew2(t) dt so2(t) = ; . (6. 3-15) 

q=l 60 set 

The estimations of e2(t) and So2(t) are thus made over the maxi- 

mum length of time during which K(t) and T(t) were essentially constant. 

(K(t) and T(t) were allowed to converge for the first 60 seconds of each 

two minute run, and time averages were computed over the second 

60 seconds. ) 

Using the previous estimate for po2 given in Eq. (6.2-9) together 

with the estimate for P Mf given in Eq. (6.3-13), the “quality” of the 

assumed model can be estimated by 

P2 0 
- 6ikI = (6.3-16) 

A2 fi The difference p. - PM1 provides an index for the evaluation of 

the effectiveness of the assumed linear model. If the assumed model 

A2 A is a good one p. - PM1 will be small, going to zero if the assumed 
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I- - 

A2-P model is perfect. p. 
5 

actually indicates how much can be 

gained by going from the present assumed model to the best linear 

time-invariant model of the subject under the particular test condition. 

h2-fi Figures 6.3.1 and 6.3.2 give plots of p. 5 for the two 

subjects analyzed spectrally. 

In both cases the differences are quite small, with one or two 

exceptions. This indicates that for many purposes the gains to be 

made by going to a more complicated model are probably not worth 

the added expense in parameter tracking equipment, or the additional 

stability problems caused by adjusting more parameters. 

A2 A In Fig. 6.3.1 two values of p. - PMI are found to be slightly less 

than zero. This would be impossible with perfect experimental data. 

This discrepancy can be attributed to one of two things, or a combina- 

tion of both: (1) the values were calculated from a limited amount of 

data and the natural variation of the data could be of the same order of 

magnitude as the true difference between po2 
A2 and PMI; and (2) p, and 

PMI were not calculated from exactly the same length of data. A2 
p. 

was calculated from 110 seconds of data from each two minute run, 

while PM I used only 60 seconds from each run. 
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wi = I Radian / Second 
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0 

DAY OF TRAINING 

Figure 6.3.1 Comparison of the Crossover Model with the 
Best Linear Time-Invariant Model-Subject l- 

Ye(P) = K/P. 
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8- 
wi = I Radian/ Second 

w i = 2 Radians /Second 

0 

I I 
II I3 

oi = 4 Radians/Second 

l6- 

DAY OF TRAINING 

Figure 6.3.2 Comparison of the Crossover Model with the 
Best Linear Time-Invariant Model-Subject 3- 

y,(P) = K2/p2. 
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Chapter 7 

CONCLUSIONS 

7.1 On the Value of the Crossover Model 

The original purpose of this research was the evaluation of the 

crossover model as the parameter tracking model for certain com- 

pensatory control systems. The evaluation was performed on subjects 

controlling single and double integrator plants. 

The choice of these two specific plants was not at all arbitrary. 

From McRuer ‘s original work it was known that the crossover model 

gain-phase curves fit experimental data very well when the plant was 

a single integrator, but only moderately well when the plant was a 

double integrator. For first and second order plants such as l/(Tp + 1) 

and l/p(Tp + l), the crossover model is probably “poorer” than in the 

single integrator case, but “better” than in the double integrator case. 

The pre-test reasoning was that the value of the crossover model 

parameter tracking system would be minimal if the system did well on 

the single integrator tests, but poorly on the double integrator tests. 

Alternately, if the system performed well on both tests its value would 

be established, since this would imply its application to plants like 

l/(Tp + l) and l/p(Tp + l), in addition to the two plants tested. 

The comparison tests of Chapter 6 indicated that on both tests the 
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values of K and T were accurate, providing o; had been chosen properly. 

For the reasons given above, this indicates the system’s usefulness on 

a large class of first and second order controlled elements. The 

particular elements contained in this class of controlled elements still 

needs to be determined. 

7.2 On the Input Characteristics for Parameter Tracking Systems 

When parameter tracking is being used in conjunction with the 

crossover model, sufficient power must be present in the crossover 

region if accurate parameter identification is to be made. The ex- 

perimental results indicate that the input power must not be down more 

than 20db at the crossover frequency for accurate parameter tracking 

to take place. 

Since the crossover frequency is a function of both the cut-off 

frequency and the controlled element, the input characteristics are 

difficult to specify exactly. However, for a K1/p controlled element 

and an input filter of the form l/ (Tp + 1)2, cut-off frequencies of 2, 

3 and 4 radians per second should be acceptable. If a l/ (Tp + 1)3 

filter is used then only 3 and 4 radians per second should be used for 

cut-off frequencies. For K2/p2 controlled elements, a l/ (Tp + 1)3 

filter ,can be used with cut-off frequencies of 2,3 and 4 radians per 

second. These cut-off frequencies assume that the signal being 

filtered is Gaussian white noise. 
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A cut-off frequency of one radian per second appears to be too low 

for most applications, and should be avoided if possible. 

7.3 On the Limited Gradient Parameter Adjustment Technique 

The limited gradient adjustment technique was found experimentally 

to give far smoother parameter tracking performance than the con- 

ventional linear adjustment technique. Although the possibility of 

parameter biasing cannot be completely discounted, the biasing (if it 

existed at all) was so small that it was not apparent on the tests 

conducted. 

This technique should prove valuable in future parameter tracking 

tests. 

7.4 On the Evaluation of Linear Parameter Tracking Models of 
Human Operators 

After convergence, a linear parameter tracking model is basically 

a time-invariant system, providing the gradient gains are low. Since 

the system is linear, it cannot be expected to account for any of the 

uncorrelated signals generated by the human. The method of comparing 

ideal power match with the relative remnant given in Chapter 6 re- 

presents one way that the quality of the parameter tracking model can 

be evaluated by direct measurement. This method admittedly requires 

rather extensive calculations, but should be performed on selected data to 

give a good evaluation of the particular model being tested. 
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Since the simple parameter tracking version of the crossover 

model accounts for such a large portion of the total linear compensatory 

output, the value of more complex linear models for the systems 

tested must be questioned. The correlated output power not accounted 

for by the crossover model is in general much less than the uncor- 

related output power, which is being completely ignored by the linear 

model. It would appear that there is more to gain from an investiga- 

tion of the uncorrelated signals, than from looking for further re- 

finements in linear models. 

7.5 On the Applications of the Crossover Model Parameter Tracking 
System 

The values of K and 7 determined by the crossover model were 

found to change significantly with training and with cut-off frequency. 

K and 7 also varied widely between subjects, and indications were that 

K and 7 would change for a given subject, if the controlled element 

were changed. 

These factors provide the basis for using K and T to: 

(1) Classify subjects. 

(2) Measure task difficulty. 

(3) Determine subject learning rates. 

In short, the crossover model parameter tracking system should 

be a valuable tool for measuring human performance. One area for 

future research is the application of the system to the type of problems 

listed above. 
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7.6 On the Effect of Training on the Form of the Human Transfer 
Operator 

One side-light of the experiments was the observation that the 

subjects did not appreciably change the basic form of their transfer 

operators during training. The forms of the gain-phase curves were 

established during the first training sessions, and only the relative 

position of these curves changed with training. This change in curve 

ppsition is associated with a change in equation coefficients, rather 

than a change in the basic equation. This is the prime reason why the 

parameter tracking system gives consistent results throughout testing. 

If the subjects had actually changed the form of their equations, the 

crossover model might have proven invalid early in training. 

7.7 On the Measurement of Remnant 

The crossover model was shown to account for all but a few per- 

cent of the correlated power out of the compensatory system. In the 

A2 experiments where p. was low, the model matching error was due 

mostly to remnant. 

e(t) = Z(t,K, 7) - Oo(t) 

= Z(t,K, 7) - S(t) - n(t) (7.4-l) 

z - n(t) . 

This provides a method for obtaining the remnant as a time 

function from which on-line analysis of the remnant can be performed. 
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The analysis of n(t) deserves considerable attention, especially 

how it changes during training. The crossover model provides an 

on-line method for obtaining pertinent information. 

7.8 Nonlinear Modifications of the Crossover Model 

Another area open for study is the addition of nonlinear elements 

into the parameter tracking crossover model. It is entirely possible 

that the addition of simple nonlinearities, such as position or velocity 

limiting, would enable the model to account for a sizeable portion of 

the remnant. This area could be investigated jointly with an investi- 

gation of the remnant itself. 

7.9 Concluding Remarks 

The major contribution of this research has been the development 

of a usable tool for the on-line measurement of human performance. 

The method has been shown to be both accurate and stable in actual 

operation. It also requires a modest amount of analog equipment for 

implementation and should be readily available to a large number of 

researchers. 

It is hoped that other researchers will be able to use this system 

to their advantage. 
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Appendix A 

COMPENSATORY TEST CONSTANTS 

The general test procedure for the compensatory tracking task is 

outlined in Section 5.1. This appendix is included for the presentation 

of various details involved in setting up the test program. 

A. 1 Instructions to Subjects 

Prior to testing each subject was given the chance to read and ask 
-=, 

questions about the instructions given below. In addition, the subject 

was allowed to test the control stick action and “feel”, but no trial 

runs were made. 

The printed instructions given to the subject were as follows: 

(7 This experiment has been designed to gain information on the 

manner in which a person learns to control a particular system, 

and how learning is related to the characteristics of the signal 

being used as an input to the control system. 

“Before I describe exactly what you will do, I want to explain 

the task in a general way. 

Wn the screen you see a dot. That dot represents the error 

of the system you are controlling, and will move back and forth 

horizontally in a random fashion. You will find that by moving the 

control stick you can force the dot to stay near the vertical center 
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line on the scope. Your task is to move the stick in such a man- 

ner that the dot stays on the center line, or as near to it as possible. 

During any one run you will find that the highest speed at which 

the dot tries to move will not change. However, the highest 

speed of the dot will be different during various blocks of runs. 

You will be told prior to each run whether to expect relatively 

‘fast ’ , ‘medium ’ , or ‘slow’ movement. 

“The graph below shows how close to the centerline a typical 

subject was able to hold the dot during a portion of a run. 

Distance 
Left 

I 

Centerline Time 

Distance + 
Right 

Figure A. 1.1 Typical Subject Error and Subject Scoring Method. 

During each run that you make, the shaded area for your run will 

be measured electronically. This area will add up to a positive 

number which is an indication of how well you performed your 

task. A lower score, or a smaller area, means you performed 

better than if the score is higher. You will find that your score 
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will be dependent upon whether the dot is moving in the fast, 

medium, or slow mode, with the fast mode having the larger 

score. However, you should strive to reduce your score on each 

run. 

“Please be seated. Place your right arm on the control stick, 

grasping the bar so that your elbow is in the same plane as your 

shoulders and body. Make yourself comfortable and remain in 

this position during the tests. You will wear these earphones, 

through which you will hear a ‘waterfall-like’ noise. This noise 

will mask out room noise which might otherwise disturb you. I 

can interrupt the noise to speak to you, and there is an intercom 

connected to the outside of the booth so that I will be able to hear 

you easily. 

“Here is what will happen. 

“Before the beginning of each run the dot will be stationary in 

the center of the scope. You should also have the control stick in 

the center position. You will hear the noise in the earphones. I 

will then interrupt the noise to see if you are ready, and tell you 

whether the run will be fast, medium, or slow. You will then 

hear a click in the earphones which acts as a warning that 10 

seconds later the target dot will begin moving back and forth 
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across the screen in a random manner. You must then begin 

moving the control stick to keep the dot in the center of the scope. 

In general, if you want the dot to move left, you must move the 

control stick to the left, and move the control stick to the right, 

if you want the dot to move to the right. 

“Each run will last 2 minutes. You will have 5 runs at one 

average speed. The speed will then be changed and 5 more runs 

made. The speed will be changed again and 5 more runs made. 

Thus you will make a total of 15 two-minute runs. You will have 

half-minute rest periods between each run, with a five minute rest 

after each group of five. I will also give you your score after each 

run. 

(‘Are there any questions?” 

A. 2 Compensatory System Gains 

The basic compensatory system block diagram is given in Fig. 1.1.1. 

The system gain constants used in the two experiments discussed in 

this report are given below. 
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Element Gain 

K/P Exp. K2/p2 Exp. 

5 inch diameter 
oscilloscope 
(Fairchild Model 700) 

0.133 0.0625 

Control stick 

Kl 

K2 

2.5 

5.0 

2.2 

5.0 

Units 

cm deflection 
volt error 

volts output 
degree rotation 

volts 
Volt 

volts 
volt 

The control stick was of the arm movement type, pivoted at the 

position of the elbow. Maximum stick deflection was f 45 degrees, 

although deflections of only half this value were generally not exceeded 

in actual test conditions. The control stick was spring loaded with a 

linear spring with a restraining force of 0.0235 pounds pe,r degree 

rotation, measured at the hand location point on the stick. 

In both experiments the input signals were filtered Gaussian 

pseudo-white noise. A I/ (Tp + 1)3 filter was used with the cut-off 

frequency adjustable to 1, 2 and 4 radians per second. The filter gains 

were set empirically so that the peak values of ei(t) were approximately 

75 volts. The filter gains were set prior to testing and were not 

changed during the experiment. 
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A. 3 Analog Diagram of the Parameter Tracking System 

The analog circuit used in the actual parameter tracking tests is 

given in Figs. A. 3.1 through A. 3.4. The potentiometer settings re- 

quired to give the scaled variables noted on the diagram are given in 

the next section in conjunction with a static test procedure. 

The total equipment needed to implement the parameter tracking 

circuit given in these figures is: 

28 summers and inverters 

8 integrators 

7 multipliers 

17 potentiometers. 
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Closed Loop 
Compensatory System 

-+ 50 (S.T.) 

D 1 2l 

co(t) 

To Pot 55 

To Pot 26 - 

[ z(t) - ei(t)] 
2 

&I;,* -+- . . 
2 ID- 27 

+1007 

- [ - Z(t)] To Pot 53 

1 B 2 

Figure A. 3.1 Assumed Model Portion of the Parameter 
Tracking Circuit. 
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lOOK 

To Mult.4 - 

-1 [ - WI 
From Amp 26 

[ - 5uo(t)] 

I 
[ 2 ~,@)I 

100 KS2 

-X 

W 
. 

c -; u#>l 1 
-0 

E 

1 W 

I+p+)l 4 

-100 
(S.T.) 

Figure A. 3.2 Sensitivity Equation Portion of the 
Parameter Tracking Circuit. 
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Figure A. 3.3 Parameter Adjustment Circuit for K(t), and the Model Error Circuit. 
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Figure A. 3.4 Parameter Adjustment Circuit for T(t). 



A. 4 Static Test Sheet 

The following static test sheet is included for those desiring to 

implement the analog circuit given in Figs. A. 3.1 through A. 3.4. 

Pot Pot 
Setting 

26 0.5000 
29 0.2500 
42 0.2500 
44 0.4500 
48 0.2000 
49 0.5500 
51 0.5000 
53 0.5000 
54 0.6000 
55 0.5000 
61 0.2000 
66 0.2000 
77 0.1000 
79 0.4000 
81 0.1000 
87 0.1000 
89 0.4000 

Amp. 

21 
22 
23 
25 
26 
29 
31 
36 
40 
41 
43 
44 
45 
46 
47 
49 
51 
55 
56 
61 
66 
70 
71 
76 
79 
81 
86 
89 

Amplifier 
output 

+ 10.00 
+ 15.00 
- 37.50 
+ 37.50 
+ 80.00 
- 80.00 
+ 45.00 
+ 26.40 
+ 45.00 
- 66.00 
- 10.00 
+ 66.00 
- 25.00 
+ 26.40 
+ 25.00 
- 26.40 
- 32.00 
- 100.00 
+ 100.00 
- 22.50 
- 13.20 
+ 65.00 
- 65.00 
- 45.00 
- 40.00 
+ 26.00 
- 26.40 
- 40.00 

Int. 

27 
42 
48 
52 
53 
77 
83 
87 

Integrator 
output 

- 25.00 
- 45.00 
+ 55.00 
- 60.00 

+ 40.00 

+ 40.00 

Additional Items 

(1) ei(t) = + 50. o( 

(2) co(t) = + 40. o( 

(3) f 1oocr = f 100 

f 1ooop = f 100 
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In actual operation with oi = 1 or 2 radians per second, the same 

pot settings given on the static test sheet were used except for pots 26, 

53,55, and 81. Pots 26 and 81 must be changed to 1.000 and 0.4000, 

respectively. Pot settings for 53 and 55 are given on Fig. A. 3.3. The 

scaled variables given on the figures assume these pot settings exist. 

When oi = 4 radians per second, pot 26 should be reduced to 0.5000. 

If limiting is desired in the parameter adjustment loops, the 

voltages * lOOa, and * 1000 p must be reduced to give the desired 

limiting. As mentioned in Chapter 4, this is done empirically, by 

observing the outputs of amplifiers 61 and 66 on Figs. A. 3.3 and 

A. 3.4. The limits are lowered until only the largest peaks of voltage 

occurring at the outputs of these amplifiers are limited. 

Aa -&-- and k7 Values for Actual Operation 

When the input signal is random, the values of % and k7 needed 

to give a desired convergence rate are directly dependent upon both 

the input filter characteristics and the point of convergence. As was 

pointed out in Chapter 4, trying to specify kK and k7 exactly a priori 

is a futile task. 

However, for the analog circuit given in Figs. A. 3.1 through 

A. 3.4 and with 0,(t) Gaussian pseudo-white noise filtered in the l-4 

radians per second range, the kK and k7 potentiometers are scaled 
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in the range necessary for practical convergence rates. This assumes 

that the peak values of e&t) are approximately 75 volts. Typical values 

used for kK and k7 are given on the time history curves of Appendix D. 

It should be noted that the variation in input characteristics from 

one 2 minute run to the next can give appreciable changes in the con- 

vergence properties. This is true even when a known system is being 

tracked using a random input signal. 
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Appendix B 

THE RANDOM VARIABLE n(Q) uo(a, K*, 7*) 

. . 
In Chapter 4 the random variable n(cr ) uo((z ,K*, 7*) was encountered. 

Sufficient conditions for this random variable to have a symmetric 

probability density function will be derived in this appendix. 

B. 1 Derivation of the Sufficiency Conditions 

Let X = n(a), Y = uo(“,K *, T*) and Z = XY be the random variables 

with the related density functions P#>9 P,(Y), p,(z) and Px y(%Y). Y 
It is first noted that if the characteristic function of Z [ lo] , as 

given in Eq. (B. l-l), is real, then pz (z) must be symmetric. 

co 

MZb) = 
5 

p,(z) ejwz dz 

-cx) 

= 
I I 

+, y(x, Y) ejwxy dx dy 
-co -co 

(B. l-l) 

If X and Y are independent, or if they are Gaussian and un- 

correlated, then 

Px ,(%Y) = P,(X) p,(Y) ? 
(B. l-2) 

and 
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co al 

MZ(W) = 
I 

px(x) dx 
I 

Pi ejoxy dy 
-al -co 

a 
= p,(x) dx cos oxy + j sin wxy dy . (B.l-3) 

-co -co 

If p,(y) is symmetric, and therefore an even function of y, 

co 

j 
J 

py(y) sin oxy dy s 0 

-0c) 

(B. 1-4) 

for all values of x. This insures that MZ(u) will be real and that 

p,(z) will have a symmetric density function. 

It should be noted that Eq. (B. l-3) could have been arranged into 

the form 

co co 

MZ(W) = 
I 

PyW dY 
I 

p,(x) e-jwyx dx . (B. 1-5) 

-co -co 

Using this form, gr) (x being an even function insures that MZ(m) is 

real and that p,(z) has a symmetric density function. 

The sufficient conditions for p,(z) to have a symmetric probability 

density function are : 
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(i) n(a) and uo(a, K*, T*) are independent, or Gaussian and 

uncorrelated; and 

(2) either n(a) or $(a, K*, T*) must have a symmetric prob- 

ability density function. 
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Appendix C 

EXPERIMENTAL CONVERGENCE TESTS 

C. 1 Sinusoidal Input Signal- No Limiting in the Parameter 
Adjustment 

In Chapter 4 the convergence properties of K(t) and 7(t) were 

discussed and expressions were developed for the time constants of 

convergence of K(t) and T(t) when e&t) is a sinusoid. From 

Eq. (4.7-17), if AT(t) E 0 then the time constant of convergence of 

K(t) is 

Time Constant = 
2 

. (C. l-l) 
of K(t) 

5 

If AK(t) E 0, then the time constant of convergence of T(t) is 

Time Constant = 
2 

of r(t) k7K*B*w sinq2g 

[ 

a% - A cos +, a7 

I 

. (C. l-2) 

K”, r* 

To check the accuracy of these equations, a test point was 

arbitrarily chosen as : K* = 4.0, T* = 0.35, w = 3 radians per second, 

and ei(t) = 20 sin 3t volts. 

Under these conditions, and after considerable computational 

effort, Eqs. (C. l-l) and (C. l-2) reduce to 
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1.52 x 10 -2 
Time Constant = 
of K(t) !K 

and 

Time Constant = 1.345 x 1o-4 

of 7(t) k7 l 

(C. l-3) 

(C. l-4) 

The intermediate calculations between these two sets of equations 

have been omitted since they are straightforward, but fairly lengthy. 

For a time constant of sixteen seconds, again chosen arbitrarily, 

kK is found to be 9.5 x 10 -4 and k7tobe 8.4x 10 -6 . Figures C.l.l 

and C. 1.2 show the convergence of K(t) when K * is being tracked 

alone, and all of the above conditions are being applied. Convergence 

properties from both above and below K* are given. Figures C. 1.3 

and C. 1.4 show the convergence of 7(t) when T * is being tracked 

alone, with all of the above conditions being applied. Again, con- 

vergence properties from both above and below the correct value are 

given. In all four figures the apparent time constant is seen to be 

approximately sixteen seconds. 

Figure C. 1. 5 gives the convergence of K(t) and T(t) when 1 Q,(t) ( 

has been doubled over the value used in Figs. C. 1.1 through C. 1.4: 

From the work of Chapter 4 this should cause the time constants to be 

reduced by a factor of four. In both cases the time constants are 

close to the theorettial values of four seconds. The four second time 
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t t=o 

Figure C. 1.1 Convergence of K(t) from Below K* = 4.0. 
Sinusoidal Input Signal. Theoretical Time Constant 

of 16 Seconds. 

- 



1 

8 i 

Figure C. 1.2 Convergence of K(t) from Above K* = 4.0. 
Sinusoidal Input Signal. Theoretical Time 

Constant of 16 Seconds. 
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t=o 

Figure C. 1.3 Convergence of T(t) from Below T* = 0.35. 
Sinusoidal Input Signal. Theoretical Time 

Constant of 16 Seconds. 
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Figure C. 1.4 Convergence of T(t) from Above 7* = 0.35. 
Sinusoidal Input Signal. Theoretical Time 

Constant of 16 Seconds. 



8 i 

T 

e i 

I:::::::-::::::::::::: ::::: :: ::: :I I : : : : : : : : : : : : : : : : : : : : : : : : : :Iy : : : : J 

t t=o (a) t t=o tb) 

Figure C. 1.5 Convergence of K(t) and T(t) from Above K* = 4.0 
and T* = 0.35. Sinusoidal Input Signal. Theoretical 

Time Constant of 4 seconds in Each Case. 
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constants are actually pushing the limits on the use of Eqs. (C. l-l) 

and (C. l-2), since K(t) and T(t) are no longer changing %lowlyl’ with 

respect to the transients in the approximate crossover model. This 

is shown by noting that the characteristic equation of the approximate 

crossover model is 

A+-+ = 2K* o 

Comparing this equation with the standard form 

A2+25wnh+con2 =o 

it follows that 

2~wn=(+*) =(A -4) 

= 1.71 

and 

The time constant of the transient decay envelope in the standard 

underdamped second order system is 

1 N 1 - = - z 1.18 seconds 
50 n 0.85 . 

This is close to the value of 4 seconds found above in the convergence 
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K(t) 
=B [I 2 (C.l-4) 

76) 

rates of K(t) and T(t), and indicates that Eq. (4.7-17) is good even 

when changes in K(t) and T(t) are relatively fast. 

To determine the stability of the parameter tracking system 

when both K(t) and T(t) are being tracked and e&t) is a sinusoid, 

Eq. (4.7-17) must be analyzed. 

Equation (4.7-17) is of the form 

where B is a 2x2 coefficient matrix. Using the same conditions on K*, 

r*, and 8 ; (t) as discussed above, the matrix B reduces to 
I 

B= 

Evaluating det[ B - XI] 

(C. l-5) 

ha + (7440 k7 + 65.9 kK)h + 491,058 kK k7 = 0 . (C. l-6) 

As long as kK > 0 and k7 > 0, Eq. (C. l-6) will yield two roots with 

negative real parts and the system is asymptotically stable. This will 

be verified in the next section, even when K(0) and ~(0) are far dif- 

ferent from K* and r*. 
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C. 2 Sinusoidal Input Signal-Limited Parameter Adjustment 

Figures C. 2.1 and C. 2.2 indicate how the limited parameter ad- 

justment technique affects the convergence rates of K(t) and T(t) when 

both parameters are being tracked against a known model with a sinu- 

soidal input signal. Figure C. 2.1 has no limiting in either parameter 

adjustment loop. Figure C. 2.2 has rather severe limiting in both 

parameter adjustment loops. 

The input signal, gradient gains, and K* and r* values are the 

same ones used in Fig. C. 1.5 where K(t) and T(t) were being tracked 

alone. It is evident that when limiting is not present, the new initial 

conditions on K(t) and T(t), combined with dual parameter tracking, 

have drastically changed the convergence rates from those found in 

Fig. C. 1.5. The parameters do converge asymptotically, as predicted 

by Eq. (C. l-6). 

In the limited case, the parameters still converge asymptotically 

although the rates are much slower. This point was evaluated in 

Section 4. 9. 

C. 3 Random Input -Two Parameters Tracking a Known Model of the 
Correct Form 

Figures &-3&toC. 3.4 are typical convergence curves found when 

tracking a known model of the correct form. Figures C. 3.1 and C. 3.2 

have wi = 2 radians/ second and Figs. C. 3.3 and C. 3.4 have 
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Figure C. 2.1 Convergence of K(t) and T(t) When Tracking Both 
Parameters. Sinusoidal Input Signal. K* = 4.0 and r* = 0. 35. 

kK = 9.5 x 10-4 and k = 8.4 x 10-G. No Parameter 
Adjusfment Limiting. 
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Figure C. 3.1 Convergence on a Known Approximate Crossover Model. K* = 5.0 and 7* = 0.15. 
Random Input Signal with wi = 2 radians/second. kK = 2.5 x 10-S and kT = 10 x 1 .0-? 
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Figure C. 3.2 Convergence on a Known Approximate Crossover Model. K* = 3.0 and T* = 0.30. 
Random Input Signal with oi = 2 radians/second. kK = 7.5 x 10-3 and k7 = 6 x 10m5. 
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Figure C. 3.3 Convergence on a Known Approximate Crossover Model. K* = 2.5 and r* = 0.40. 
Random Input Signal with oi = 4 radians/second. kK = 3.1 x lOa and k7 = 5 x 10e6. 
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Figure C. 3.4 Convergence on a Known Approximate Crossover Model. K* = 5.0 and T* = 0.20. 
Random Input Signal with wi = 4 radians/ second. kK = 4.65 x 10m4 and kT = 30x 10-6. 



oi = 4 radians/second. In each case different K* and r* values were 

used. The kK and k7 values are typical of those used in actual subject 

testing. In each figure K(t) and T(t) are found to converge asympto- 

tically. 

The response times shown in the figures above can be made con- 

siderably shorter by increasing the gradient gains. Complete 

convergence can be obtained in only three or four seconds, when no 

remnant is present in the model error signal e(t, K, 7). However, 

once remnant is present, convergence rates similar to those found 

in Figs. C. 3.1 to C. 3.4 must be used in order to give smooth para- 

meter adjustment. The curves above are intended to show that even 

when the gradient gains are low, and convergence is slow, the con- 

vergence is still asymptotic. 

The parameter responses given above indicate how well the 

tracking system is able to follow simultaneous step changes in K* and 

r* with step magnitudes of 1 K* - K(0) 1 and 1 r* - ~(0) / . The slowness 

of the responses indicates that in actual practice the tracking system 

would accurately follow only very slow trends in K* and T*. This 

fact has been well documented by both Bekey [7] and Hoffman [ 191. 

Fortunately, it has been shown that, on the average, the human 

operator is fairly stationary for periods of lo-12 minutes or even 

longer [ 281. 
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C. 4 Effect of Parameter Adjustment Limiting on Convergence 
in Actual Operation 

The spectral and parameter tracking comparisons made in 

Chapter 6 indicated that for the cases evaluated the limited gradient 

did not bias the parameter values. The time histories included’in this 

section are intended to emphasize the desirability, from and experi- 

mental viewpoint, of using this technique. 

Figure C. 4.1 is the time history of one 2 minute trial showing how 

the parameters can be greatly disturbed by a sudden increase in 

remnant, when the conventional linear parameter adjustment technique 

is used. This was one of the worst cases encountered in all of the 

tests conducted. 

Figure C. 4.2 is the same run as above with kK and k7 set at the 

same values, but with the nonlinear gradient now in use. The para- 

meters are seen to behave in a much smoother manner. It is apparent 

from this one example that significant improvement in response occurs 

even when limiting occurs over only a small portion of the total time 

interval of the trial. Continuous limiting is not necessary, and is not 

desirable, since the probability of biasing should increase with the 

severity of the limiting. 

It has been previously noted that the limited gradient technique was 
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used on all runs in the K2/p2 experiment. It should also be noted that 

in spite of the large amount of remnant power present in these runs, 

the tracking system did not go unstable a single time. This success 

is felt to be partly attributable to the limited gradient technique. 

The stabilizing effect of the limiter is very encouraging from an 

experimental viewpoint. Further theoretical work on its overall 

effect is needed. 
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Appendix D 

SAMPLE TIME HISTORIES 

Included in this appendix are a few sample time histories from one 

subject from each of the two experiments. These are the, same two 

subjects that were analyzed spectrally in Chapter 6. 

D. 1 Sample Time Histories from the Y,(p) = K,/p Experiment 

Figures D. 1.1 through D. 1.4 are sample time histories from 

Subject 1 of the first compensatory tracking experiment. In each case 

the initial conditions on K(t) and 7(t) have purposely been set far enough 

away from their final values so that the convergence rates can be ob- 

served. 

In actual subject testing, the initial conditions on K(t) and T(t) were 

adjusted after the first run at each test condition so that the para- 

meters were not far from their probable final values. The initial 

conditions on the first run of each block of five runs were set away 

from the probable final values so that convergence could be observed. 

The gradient gains used in these figures are the same ones used in 

actual data reduction. 

D. 2 Sample Time Histories from the Y,(p) = K2/p2 Experiment 

Figures D. 2.1 through D. 2.4 are sample time histories from 

Subject 3 of the second compensatory tracking experiment. The 

200 



+ 

Z 

t 

2s 

-:::::::u:::::::.::::::::w:::::::::-::::::: 

Figure D. 1.1 Time History-Subject 
Y,(p) = K1/p-kK = 6 

l-Da 2---ui 
x lo- 1 -k7 = 

= 2 5- 
1.6 

radF;s/second-Run 
x 10 . 



I : 2 : : : : : : : : : : : : - : : : : : : : : : : : : : : : :- : : : : : : : : : : : : : : : : : : : : : :w : : : : : : : : : : : : : : : : : : : : : : : : : : :-A 

Figure D. 1.2 Time History-Subject l-Day 2--w. = 4 radian 
Y,(p) = K/p-kK = 1.25 x 10-3-k7 = 4 x d 

second-Run l- 
lo- . 



,““,,l i ) / i i i ) i ) i I i I i / i ,i i i / i / i / i / ) / i ./ ) / / i / ,si ,,) ,i 

Figure D. 1.3 Time History-Subject l-Day 10----~~ = 2 radiant second-Run l- 
Y,(p) = K1/p-kK = 1.2 x 10-4-k7 = 1.6 x lo- . 



c 

+100 

z 0 

-100 

+I00 

e 0 

-100 

Figure D. 1.4 Time History-Subject l-Day 10-u. = 4 radia 
Y,(p) = K/p-kK = 1.25 x 10-3-k; = 4 x ‘6 

s/second-Run l- 
lo- . 



Figure D.2.1 Time History-Subject 3-Da 5,--wi = 2 raditn5s/second-Run l- 
y,(P) = K2/P2-kK = 4 x 10’ 3 -k7 = 1.6 x 10 . 
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initial conditions on K(t) and T(t) have again been chosen to show 

convergence. 

The gradient gains used in these figures are the same ones used 

in actual data reduction. 
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Appendix E 

SPECTRAL ANALYSIS 

The spectral analyses discussed in Chapter 6 were all done digi- 

tally using PDP-1 and CDC-16OA computers. The spectral densities 

were developed on the PDP-1, while all averaging and transfer function 

calculations were performed on the CDC-160A. 

The computer equations used to determine the spectral densities 

for each two minutes of recorded data will be discussed in this 

appendix. 

E. 1 Sampling Rates and Analog-Digital Conversion 

The input signal e,(t) and the output signal Be(t) for each two 

minute run that was spectrally analyzed were converted from analog 

to digital signals by sampling their recorded values. The sampling 

was done in an A-D converter while the data was being fed from the 

magnetic tape recorder into the PDP-1 for spectral calculations. 

The sampling rate was set at 20 samples per second. It was felt 

that co(t) and e,(t) had negligible power above five cycles per second 

and that the sampling rate used was high enough to eliminate frequency 

aliasing . 

Of the 120 seconds of data recorded from each run, only the last 
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110 seconds was sampled. The first 10 seconds of each run was 

omitted to assure that the speed of the magnetic tape recorder had 

stabilized before sampling started. Also, this eliminated those por- 

tions of the signals which contained the transient behavior of the 

subjects tracking start-up. 

E. 2 Spectral Calculation 

To describe the spectral program the following nomenclature is 

defined : 

Tn = Record length per run 

= 110 seconds 

n = Number of samples per run 

= 20 samples per second X 110 seconds 

= 2200 samples 

Tm = Maximum length of lag used in the calculation of the 

approximate correlation functions 

= 10 seconds 

m = Maximum length of lag in terms of samples 

= 200 

At = Time between samples 

= l/sampling rate 

= l/20 seconds 
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These definitions are taken from the work of Blackman and 

Tukey [ 91 p as is the general method of analysis. 

The general procedure is to find the auto- or cross-correlation 

function for each two minutes of data, and then Fourier transform 

these functions to obtain the spectral or cross-spectral densities for 

that particular run. Estimates of the true densities for a given sub- 

ject, on a given day, at a given test condition are then determined by 

averaging the individual run densities over the five runs. This pro- 

cedure is discussed in Section 6.1. 

The auto-correlation function determined for the qth two minute - 

run of Qo(t) is given in Eq. (6. l-9). This is calculated digitally by 

2200 - 5 

C ow(tAt) = Tw(t;;;t c 
n 

Boq(rAt) eoq(rAt + (At) , (E. 2-l) 

r=O 

5 =0,1,2,. . . , m 

where the smoothing function W (a ) is defined as 

W(a)=0.54+0.46cos~ , ICYI < m. (E. 2-2) - 
m 

The equation for the spectral density of Qo(t), as determined from 

the qth two minute run, is given in Eq. (6.1-10). This was calculated - 

as 

I I ‘\ 
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+m ~ooqb) = c Cooq(fAt) e-@“t At 
5 c-m 

m 
= Coos(O) At + 2 

c 
Co,,(tAt)cos(w5At) At , (E. 2-3) 

5 =I 

since C ooq( ) Q is an even function. 
C 
Equation (E. 2-3) was calculated only at the discrete frequencies 

% = 297 fp, where 

P 
fp = 2(At)m C’s ’ p = 0, 1,2, . . m 

so that 

#ow(op) = . . 

(E. 2-4) 

cooq(o) + 2 2 cooq(e At) cos At . (E. 2-5) 
5 =1 

tj~.~(op) was calculated in exactly the same manner as the method 

described above for C#I ooq(~P). For the cross-spectral case the 

equation for the approximate cross-correlation function, as determined 

from the qth two minute run, was - 

Ci,(~A’) = (~c*-A~~ At I ) 
c Ozq(rAt)Ooq(rAt + 6 At) (E. 2-6) i n 

r=r 1100 + 14 1 I 
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and the corresponding cross-spectral density function 

m 

m -j c C,,(EAt) sin 
. 5=-m 

(E. 2-7) 

E. 3 Confidence Band for the Spectral Calculations 

The equations necessary to determine the confidence in the 

spectral densities are given in Blackman and Tukey [ 91. The 90% 

confidence band (in decibels) is 

=4.44db . (E. 3-1) 

This means that 90% of the time the magnitude of the spectral density, 

as calculated from each two minute run, will fall within f 2.22 db of 

the true value. 

E. 4 Sample Transfer Function Calculation 

To test the accuracy of the spectral calculations and the method . 

of generating transfer functions the following test was run: A random 

signal of filtered Gaussian white noise was put through a closed loop 

system with a forward loop consisting of the parameter tracking 
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version of the crossover model. The value of K was set at 3.0 and 

the value of T at 0.35. ei(t) and co(t) were recorded during five runs 

of two minutes duration. The forward loop gain-phase curves of the 

model were then calculated using the spectral density approach as 

developed for actual subject evaluation. The results are given in 

Fig. E. 4.1. It is seen that the experimental curves match the 

theoretical gain and phase curves for the forward loop quite well. 
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Figure E. 4.1 Checking the Transfer Function of a Known 
Approximate Crossover Model Using Spectral Analysis. 

K* = 3.0 and r* = 0.35. Random Input Signal with 
oi = 4 radians/second. 

225 



Appendix F 

AN OBSERVATION ON PARAMETER .TRACKING SYSTEMS 
USING TI’ERATIVE PARAMETER ADJUSTMENT 

The sensitivity equations used in the continuous parameter tracking 

system were developed in Chapter 3 under the assumption that the 

assumed model parameters K and 7 were constant. The equations were 

implemented so that both K and 7 could be adjusted continuously. This 

means, of course, that the parameter adjustment equations are in 

error, except in the limit as K(t) and T(t) approach constant values. 

In spite of this error which exists during the convergence interval, it 

was shown theoretically in Chapter 4 and experimentally in-Appendices 

C and D, that the parameters do converge to the correct values. 

One would guess that a straightforward way to circumvent this 

problem, and to completely eliminate the use of the erroneous equations, 

is to use the iterative adjustment technique discussed in Chapter 3. In 

this method the assumed model parameters are held constant during ! 

a computational period of T seconds. At the end of this period the 

parameters ai are step changed by an amount AcY~, where 

I 
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A’yi(tl) = - kg (t 
i ’ 

,-;;) 

k 5 

=-;i; I 
eg (t,;)dt , 

tl-T i 

and ff - (t,-a 
i 

= ui(t, z) is the sensitivity coefficient for Q i. At time tl 

this adjustment is made on all the ai, and a new period of T seconds 

is initiated. 

The first impression on the use of this method is that it is com- 

pletely accurate. The cyi are held constant during the entire computa- 

tion interval, and the sensitivity equations should be 100% correct. 

It should be noted, however, that this is not the case. 

The sensitivity equations, by definition, are based on information 

obtained by noting the changes in 2 (t,;) that would be caused by small - 
changes in ai made at the start of the solution. All initial transients --- 

are either specifically accounted for, or are allowed to die out. 

Therefore, if the parameter tracking system changes any parameter 

that will introduce a transient into the system, this transient must be 

allowed to die out before the equations are again error-free. 

In the case of the crossover model, transients die out with a basic 

time constant that can exceed one second. (See the example in 

Section C. 1. ) This means that one should wait at least three seconds 
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I 
.: 

after parameter adjustment before starting the next computational 

period. 

It can be argued that the transients introduced by the step 

changes in the parameters will be negligible, if the Acui are small. 

This is undoubtedly true. However, picking the ACY~ small dictates 

that T must also be small to insure convergence in a reasonable 

length of time. In the limit as T - 0, the continuous parameter 

adjustment case is generated. 

The purpose of this discussion is merely to point out one distinct 

possibility: If the convergence rates of the parameters in the con- 

tinuous adjustment method are slow, (compared to the time constants 

of the model) the parameter adjustment equations probably will be no 

more in error than those found in the iterative adjustment technique, 

if no time is allowed in the latter case for transients to die out. 
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